3.广州泽方环保科技有限公司,广州 510006
1.School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
2.Institute of Environmental Health and Pollution Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, China
3.Guangzhou Zefang Environmental ProtectionTechnology Co. Ltd., Guangzhou 510006, China
由于我国铁尾矿堆存量大、铁品位低,导致其资源化利用率低,因此,以木屑生物质作还原剂回收铁尾矿中的铁元素,考察不同焙烧温度、焙烧时间、木屑添加量等对铁尾矿磁化焙烧的影响。结果表明:木屑磁化焙烧提高铁尾矿磁性性能的最佳焙烧条件为焙烧温度750 ℃、木屑添加量15%及焙烧时间40 min;在该条件下,铁精矿品位为62.84%,且铁回收率为94.58%。经物相分析发现,原铁尾矿中,含铁矿物主要为赤铁矿,而焙烧后主要以磁铁矿为主。振动样品磁强计分析表明,铁矿石的饱和磁化强度从0.04 emu·g
。以木屑生物质作为还原剂进行铁尾矿磁化焙烧,可较好地提高其中铁的品位和磁化强度,从而实现铁矿石的低强度磁选分离。
China’s iron tailings pile has a large stock and low iron grade, resulting in its low resource utilization rate. In this study, sawdust biomass was used as reducing agent to recover the iron element in iron tailings, and the influence of calcination temperature, calcination time and sawdust dosage on magnetization-calcination of iron tailings. The results show that the best conditions for sawdust magnetization calcination to improve the magnetic property of iron tailings were as follows: calcination temperature of 750 ℃, 15% sawdust dosage and calcination time of 40 min, at which the iron concentrate grade and iron recovery rate were 62.84% and 94.58%, respectively. Phase analysis showed that hematite was the main crystalline phase in the iron-bearing minerals of raw iron tailings were mainly, and magnetite was the main crystalline phase in calcined iron tailings. The analysis with vibration sample magnetometer further showed that the saturation magnetization of iron ore increased from 0.04 emu·g
. Magnetization calcination using sawdust biomass as a reducing agent could greatly improve the grade and magnetization intensity of iron in iron tailings, and achieve low-intensity magnetic separation of iron oxide.
.
Effect of calcination temperature on magnetization calcination
Effect of sawdust addition on magnetization calcination
Effect of calcination time on magnetization calcination
SEM images of raw ore and calcined ore
XRD pattern of raw ore and iron concentrate
Hysteresis loop of raw ore and iron concentrate
TG curve of raw ore and the mixture of iron tailings with 15% sawdust
[1] | World Steel Association. Global crude steel output increases by 3.4% in 2019 [EB/OL]. [2020-01-27]. https://www.worldsteel.org/media-centre/press-releases/2020/Global-crude-steel-output-increases-by-3.4--in-2019.html, 2020. |
[2] | DONSKOI E, COLLINGS A F, POLIAKOV A, et al. Utilisation of ultrasonic treatment for upgrading of hematitic/goethitic iron ore fines[J]. International Journal of Mineral Processing, 2012, 114-117: 80-92. doi: 10.1016/j.minpro.2012.10.005 |
[3] | HUANG D B, ZONG Y B, WEI R F, et al. Direct reduction of high-phosphorus oolitic hematite ore based on biomass pyrolysis[J]. Journal of Iron and Steel Research International, 2016, 23(9): 874-883. doi: 10.1016/S1006-706X(16)30134-0 |
[4] | YU W, SUN T C, HU T Y. Desulfuration behavior of low-grade iron ore-coal briquette during the process of direct reduction followed by magnetic separation[J]. ISIJ International, 2015, 55(1): 329-331. doi: 10.2355/isijinternational.55.329 |
[5] | ZHAO Q, XUE J, CHEN W. Zero-waste recycling method for nickel leaching residue by direct reduction magnetic separation process and ceramsite preparation[J]. Transactions of the Indian Institute of Metals, 2019, 72(4): 1075-1085. doi: 10.1007/s12666-019-01582-7 |
[6] | LI H, LONG H, ZHANG L, et al. Effectiveness of microwave-assisted thermal treatment in the extraction of gold in cyanide tailings[J]. Journal of Hazardous Materials, 2019, 384: 1-11. |
[7] | SAMOUHOS M, TAXIARCHOU M, TSAKIRIDIS P E, et al. Greek “red mud” residue: A study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process[J]. Journal of Hazardous Materials, 2013, 254(1): 193-205. |
[8] | LI Y J, WANG R, HAN Y X, et al. Phase transformation in suspension roasting of oolitic hematite ore[J]. Journal of Central South University, 2015, 22(12): 4560-4565. doi: 10.1007/s11771-015-3006-8 |
[9] | TRISNANTO S B, KITAMOTO Y. Nonlinearity of dynamic magnetization in a superparamagnetic clustered-particle suspension with regard to particle rotatability under oscillatory field[J]. Journal of Magnetism Magnetic Materials, 2016, 400: 361-364. doi: 10.1016/j.jmmm.2015.07.016 |
[10] | CHARVES A P, RUIZ A S. Considerations on the kinetics of froth flotation of ultrafine coal contained in tailings[J]. International Journal of Coal Preparation and Utilization, 2009, 29(6): 289-297. doi: 10.1080/19392690903558371 |
[11] | LI H, LI X, LIU L, et al. Experimental study of microwave-assisted pyrolysis of rice straw for hydrogen production[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2263-2267. doi: 10.1016/j.ijhydene.2015.11.137 |
[12] | PONOMAR V P, BRIK O B, CHEREVKO Y I, et al. Kinetics of hematite to magnetite transformation by gaseous reduction at low concentration of carbon monoxide[J]. Chemical Engineering Research Design, 2019, 148: 393-402. doi: 10.1016/j.cherd.2019.06.019 |
[13] | SUN Y S, HAN Y X, GAO P, et al. Growth kinetics of metallic iron phase in coal-based reduction of oolitic iron ore[J]. ISIJ International, 2016, 56(10): 1697-1704. doi: 10.2355/isijinternational.ISIJINT-2016-253 |
[14] | SUN Y S, HAN Y X, GAO P, et al. Distribution behavior of phosphorus in the coal-based reduction of high-phosphorus-content oolitic iron ore[J]. International Journal of Minerals Metallurgy and Materials, 2014, 21(4): 331-338. doi: 10.1007/s12613-014-0913-x |
[15] | WEBER K, QUICKER P. Properties of biochar[J]. Fuel, 2018, 217: 240-261. doi: 10.1016/j.fuel.2017.12.054 |
[16] | YANG X, WAN Y, ZHENG Y, et al. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review[J]. Chemical Engineering Journal, 2019, 366: 608-621. doi: 10.1016/j.cej.2019.02.119 |
[17] | ?AHBAZ O, U?RA A, ?TEYAKA B, et al. Separation of colemanite from tailings using the pilot scale flotation column[J]. Powder Technology, 2017, 309: 31-36. doi: 10.1016/j.powtec.2016.12.077 |
[18] | NAYAK D, DASH N, RAY N, et al. Utilization of waste coconut shells in the reduction roasting of overburden from iron ore mines[J]. Powder Technology, 2019, 353: 450-458. doi: 10.1016/j.powtec.2019.05.053 |
[19] | ZHANG K, CHEN X L, GUO W C, et al. Effects of biomass reducing agent on magnetic properties and phase transformation of Baotou low-grade limonite during magnetizing-roasting[J]. Plos One, 2017, 12(10): e0186274. doi: 10.1371/journal.pone.0186274 |
[20] | RATH S S, RAO D S, TRIPATHY A, et al. Biomass briquette as an alternative reductant for low grade iron ore resources[J]. Biomass and Bioenergy, 2018, 108: 447-454. doi: 10.1016/j.biombioe.2017.10.045 |
[21] | 余高, 陈芬, 谢英荷, 等. 农业有机废弃物资源化利用潜力与安全性评价[J/OL]. [2020-01-01]. 河南农业科学, 2020: 1-10. http://www.hnnykxbjb.cn/index.php?m=content&c=index&a=lists&catid=2. |
[22] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤的工业分析方法: GB/T 212-2008[S]. 北京: 中国标准出版社, 2008. |
[23] | YU J, HAN Y, LI Y, et al. Beneficiation of an iron ore fines by magnetization roasting and magnetic separation[J]. International Journal of Mineral Processing, 2017, 168: 102-108. doi: 10.1016/j.minpro.2017.09.012 |
[24] | WANG Z B, PENG B, ZHANG L F, et al. Study on formation mechanism of fayalite (Fe2SiO4) by solid state reaction in sintering process[J]. Journal of the Minerals, Metals & Materials Society, 2018, 70(4): 539-546. |
[25] | LAZDOVICA K, KAMPARS V, LIEPINA L, et al. Comparative study on thermal pyrolysis of buckwheat and wheat straws by using TGA-FTIR and Py-GC/MS methods[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 1-15. doi: 10.1016/j.jaap.2017.03.010 |
[26] | 陈楠纬, 孙水浴, 任杰, 等. 咖啡渣燃烧特性及动力学研究[J]. 环境科学学报, 2015, 35(9): 2942-2947. |
[27] | 朱德庆, 赵强, 邱冠周, 等. 安徽褐铁矿的磁化焙烧磁选工艺[J]. 北京科技大学学报, 2010, 32(6): 714-718. |
[28] | 王威, 刘红召, 曹耀华, 等. 江西某铁尾矿磁化焙烧磁选工艺研究[J]. 金属矿山, 2013(12): 147-150. |
[29] | 徐承焱, 孙体昌, 寇珏, 等. 还原剂对高磷鲕状赤铁矿还原行为的影响[J]. 材料热处理学报, 2015, 36(10): 8-15. |