Abstract:The macroporous ion exchange resin (SM-D001) was prepared by a sulfonation reaction and a swelling-infiltration method using a waste television shell (WTVS) as a raw material, and as a carrier of a CO2 adsorption material, the SM-D001 were characterized by nitrogen adsorption-desorption, fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) techniques, scanning electron microscopy (SEM) and mercury injection.The effects of SM-D001 prepared with different amounts of n-heptane, different ethanol/water mass ratios and different pore-forming times on CO2 adsorption capacity were investigated. The results showed that when the amount of pore-forming agent n-heptane was 25 g, the ethanol/water mass ratio was 90∶10, and the pore-forming time was 5 h, the equilibrium adsorption capacity of the prepared ion exchange resin for CO2 reached 1.87 mmol·g?1. The solid amine adsorbents were prepared by using coordination method with SM-D001 as carrier and with penta ethylene hexamine (PEHA) as modifier, and the maximum CO2 adsorption capacity is 3.61 mmol·g?1, and adsorption kinetics was studied to providing reference for further proving that the adsorption process of solid amine adsorbent on CO2 was a combination of physical adsorption and chemical adsorption. Key words:waste television shell/ macroporous ion exchange resin/ CO2 adsorption/ adsorption kinetics.
图1固定床反应器实验装置图 Figure1.Schematic diagram of fixed bed reactor
图5WTVS、磺酸钠型树脂和SM-D001 N2吸附-脱附等温线和BJH孔径分布 Figure5.N2 adsorption-desorption isotherm and BJH pore size distribution of WTVS, sodium sulfonate resin and SM-D001
图8不同乙醇/水质量比下制备的SM-D001的吸附穿透曲线和吸附能力曲线 Figure8.Adsorption penetration curves and adsorption capacity curves of SM-D001 prepared at different ethanol/water mass ratios
图9不同致孔时间下制备的SM-D001的吸附穿透曲线和吸附能力曲线 Figure9.Adsorption penetration curves and adsorption capacity curves of SM-D001 prepared at different pore-forming time
图10不同正庚烷的量制备的SM-D001的吸附穿透曲线和吸附能力曲线 Figure10.Adsorption penetration curves and adsorption capacity curves of SM-D001 prepared with different n-heptane amount
图11SM-D001-Cu-xPEHA吸附剂吸附量数据和Avrami动力学模型拟合 Figure11.Experimental adsorption capacity of SM-D001-Cu-xPEHA and its corresponding fitting curves with Avrami kinetic models
表1SM-D001各孔径段孔容及分布比例 Table1.Pore volume and distribution ratio of each pore diameter segment of sodium sulfonate resin and SM-D001
样品
孔体积/(mL·g?1)
不同孔径的孔体积/(mL·g?1)
不同孔径孔体积占总体积百分比/%
微孔
介孔
大孔
微孔
介孔
大孔
磺酸钠型树脂
1.08
0
0.01
1.07
0
0.93
99.07
SM-D001
3.52
0
0.08
3.44
0
2.27
97.73
样品
孔体积/(mL·g?1)
不同孔径的孔体积/(mL·g?1)
不同孔径孔体积占总体积百分比/%
微孔
介孔
大孔
微孔
介孔
大孔
磺酸钠型树脂
1.08
0
0.01
1.07
0
0.93
99.07
SM-D001
3.52
0
0.08
3.44
0
2.27
97.73
下载: 导出CSV 表2磺酸钠型树脂和SM-D001各孔径段比表面积及分布比例 Table2.Specific surface area and distribution ratio of each pore diameter segment of sodium sulfonate resin and SM-D001
样品
比表面积/(m2·g?1)
不同孔径的比表面积/(m2·g?1)
不同孔径比表面积占总比表面积百分比/%
微孔
介孔
大孔
微孔
介孔
大孔
磺酸钠型树脂
2.00
0
0.19
1.81
0
0.10
0.90
SM-D001
30.70
0
23.97
6.73
0
78.08
21.92
样品
比表面积/(m2·g?1)
不同孔径的比表面积/(m2·g?1)
不同孔径比表面积占总比表面积百分比/%
微孔
介孔
大孔
微孔
介孔
大孔
磺酸钠型树脂
2.00
0
0.19
1.81
0
0.10
0.90
SM-D001
30.70
0
23.97
6.73
0
78.08
21.92
下载: 导出CSV 表3不同PEHA负载量下吸附剂对CO2的吸附能力的影响 Table3.Influence of PEHA loads on CO2 adsorption capacity by adsorbents
PEHA占固态胺吸附剂的 质量分数x
穿透吸附量/ (mmol·g?1)
平衡吸附量/ (mmol·g?1)
0
1.14
1.87
0.1
1.43
2.15
0.2
1.55
2.83
0.3
2.12
3.61
0.4
1.55
2.66
0.5
0.89
1.66
PEHA占固态胺吸附剂的 质量分数x
穿透吸附量/ (mmol·g?1)
平衡吸附量/ (mmol·g?1)
0
1.14
1.87
0.1
1.43
2.15
0.2
1.55
2.83
0.3
2.12
3.61
0.4
1.55
2.66
0.5
0.89
1.66
下载: 导出CSV 表4SM-D001-Cu-xPEHA的CO2吸附动力学模型拟合参数 Table4.Fitting parameters of CO2 adsorption kinetic model of SM-D001-Cu-xPEHA
ANDRADY A L, NEAL M A. Applications and societal benefits of plastics[J]. Philosophical Transactions of the Royal Society of London, 2009, 364(1526): 1977-1984. doi: 10.1098/rstb.2008.0304
SINGH N, HUI D, SINGH R, et al. Recycling of plastic solid waste: A state of art review and future applications[J]. Composites Part B: Engineering, 2017, 115: 409-422. doi: 10.1016/j.compositesb.2016.09.013
[4]
SUBRAMANIAN P M. Plastics recycling and waste management in the US[J]. Resources Conservation and Recycling, 2000, 28(3/4): 253-263.
[5]
BARBARIAS I, LOPEZ G, ALVAREZ J, et al. A sequential process for hydrogen production based on continuous HDPE fast pyrolysis and in-line steam reforming[J]. Chemical Engineering Journal, 2016, 296: 191-198. doi: 10.1016/j.cej.2016.03.091
SUIKOWSKI W W, NOWAK K, SUIKOWSKA A. Chemical recycling of polystyrene, sulfonation with different sulfonation agents[J]. Molecular Crystals, 2010, 523(1): 218-227.
[8]
SULKOWSKI W W, NOWAK K, SUIKOWSKA A. New applications of sulfonated derivatives of polystyrene waste[J]. Molecular Crystals and Liquid Crystals, 2012, 556(1): 25-38. doi: 10.1080/15421406.2012.635906
[9]
ZHANG J Q, LIU S H, CHEN J Y, et al. Preparation of anion exchange resin by recycling of waste printed circuit boards[J]. RSC Advances, 2015, 129(5): 106680-106687. doi: 10.1039/C5RA18142A
[10]
TSENG R L, WU F C, JUANG R S. Adsorption of CO2 at atmospheric pressure on activated carbons prepared from melamine-modified phenol-formaldehyde resins[J]. Separation and Purification Technology, 2015, 140: 53-60. doi: 10.1016/j.seppur.2014.11.018
SERNA-GUERRERO R, SAYARI A. Modeling adsorption of CO2 on amine-functionalized mesoporous silica. 2: Kinetics and breakthrough curves[J]. Chemical Engineering Journal, 2010, 161(1/2): 182-190.
[13]
WANG X, GUO Q J, KONG T T. Tetraethylenepentamine-modified MCM-41/silica gel with hierarchical mesoporous structure for CO2 capture[J]. Chemical Engineering Journal, 2015, 273: 472-480. doi: 10.1016/j.cej.2015.03.098
[14]
DARDOURI M, AMOR A B H, MEGANEM F. Preparation, characterization and ion adsorption properties of functionalized polystyrene modified with 1,4-phenylene diisocyanate and diethylenetriamine[J]. Chemical Papers, 2015, 69(12): 1617-1624.
[15]
BEKRI-ABBES I, BAYOUDH S, BAKLOUTI M. The removal of hardness of water using sulfonated waste plastic[J]. Desalination, 2008, 222(1/2/3): 81-86.
[16]
OZER O, INCE A, KARAGOZ B, et al. Crosslinked PS-DVB microspheres with sulfonated polystyrene brushes as new generation of ion exchange resins[J]. Desalination, 2013, 309: 141-147. doi: 10.1016/j.desal.2012.09.024
[17]
ZHAO Y X, DING H L, ZHONG Q. Preparation and characterization of aminated graphite oxide for CO2 capture[J]. Applied Surface Science, 2012, 258(10): 4301-4307. doi: 10.1016/j.apsusc.2011.12.085
[18]
MALIK M S, QAISER A A, ARIF M A, et al. Structural and electrochemical studies of heterogeneous ion exchange membranes based on polyaniline-coated cation exchange resin particles[J]. RSC Advances, 2016, 6(116): 115046-115054. doi: 10.1039/C6RA24594C
MEI L B, LIU X M, WU J J. CO2 adsorption performance of polyethyleneimine-modified ion-exchange resin[J]. Separation Science and Technology, 2018, 53(11): 1628-1637. doi: 10.1080/01496395.2017.1405041
YUAN Q, YANG L B, WANG M Z, et al. The mechanism of the formation of multihollow polymer spheres through sulfonated polystyrene particles[J]. Langmuir, 2009, 25(5): 2729-2735. doi: 10.1021/la803724r
[27]
GE X P, GE X W, WANG M Z, et al. A novel approach for preparation of “cage-like” multihollow polymer microspheres through sulfonated polystyrene particles[J]. Colloid and Polymer Science, 2012, 290(17): 1749-1757. doi: 10.1007/s00396-012-2709-8
HU Z H, CHEN H, JI F, et al. Removal of congo red from aqueous solution by cattail root[J]. Journal of Hazardous Materials, 2010, 173(1/2/3): 292-297.
[30]
HEYDARI-GORJI A, SAYARI A. CO2 capture on polyethylenimine-impregnated hydrophobic mesoporous silica: Experimental and kinetic modeling[J]. Chemical Engineering Journal, 2011, 173(1): 72-79. doi: 10.1016/j.cej.2011.07.038
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China Received Date: 2019-03-30 Accepted Date: 2019-06-20 Available Online: 2020-01-20 Keywords:waste television shell/ macroporous ion exchange resin/ CO2 adsorption/ adsorption kinetics Abstract:The macroporous ion exchange resin (SM-D001) was prepared by a sulfonation reaction and a swelling-infiltration method using a waste television shell (WTVS) as a raw material, and as a carrier of a CO2 adsorption material, the SM-D001 were characterized by nitrogen adsorption-desorption, fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) techniques, scanning electron microscopy (SEM) and mercury injection.The effects of SM-D001 prepared with different amounts of n-heptane, different ethanol/water mass ratios and different pore-forming times on CO2 adsorption capacity were investigated. The results showed that when the amount of pore-forming agent n-heptane was 25 g, the ethanol/water mass ratio was 90∶10, and the pore-forming time was 5 h, the equilibrium adsorption capacity of the prepared ion exchange resin for CO2 reached 1.87 mmol·g?1. The solid amine adsorbents were prepared by using coordination method with SM-D001 as carrier and with penta ethylene hexamine (PEHA) as modifier, and the maximum CO2 adsorption capacity is 3.61 mmol·g?1, and adsorption kinetics was studied to providing reference for further proving that the adsorption process of solid amine adsorbent on CO2 was a combination of physical adsorption and chemical adsorption.