3.郑州大学水利与环境学院,郑州 450001
3.College of Water Conservancy & Environmental Engineering, Zhengzhou University, Zhengzhou 450001, China
利用餐厨垃圾发酵液生产聚羟基脂肪酸酯(PHA)可以在废物处理的同时实现有价资源回收。为探究发酵液中盐分对产PHA菌群富集过程的影响,以模拟餐厨垃圾发酵液为底物,研究了盐度存在下污泥理化性质、富集过程主要指标及菌群PHA合成能力等变化。结果表明,未经盐度富集的菌群易受到盐度抑制,在15 g·L
(以VSS计),对菌群保护能力最强。不同盐度条件下的富集系统皆能保持较好的生态选择压力,但盐度对微生物生长的抑制随着浓度的增大而增强。经过盐度存在下长期富集后的污泥,在高盐度(10、15 g·L
)有助于提高PHA合成能力,最高达50.5%。
Polyhydroxyalkanoate (PHA) production using food waste fermentation liquid could recover the valuable resource during the waste treatment. To explore the influence of salinity on PHA-accumulating bacteria enrichment process, simulated food waste fermentation liquid was used as substrate to investigate the changes in physiochemical properties of sludge, main process parameters and PHA storage ability when exposed to salinity. Results showed that the bacterial flora without salinity acclimation was inhibited by salinity and the maximum PHA content of sludge could decrease to 39.9% at salinity of 15 g·L
. In enrichment process, the increase of salinity improved the sludge settleability, and the extracellular polymeric substance content reached the highest (49.8 mg·g
, which could provide the strongest protection for bacteria. Robust ecological selective pressure could be maintained regardless of salinity gradients, but the inhibition on the growth of bacteria was enhanced with the increase of salinity. A good PHA storage ability could obtained with the substrates at high salinities of 10, 15 g·L
for the enriched bacteria after long-term enrichment at high salinity concentrations, but its low growth activity was not conducive to the improvement of final PHA production. Under short-term enrichment, the PHA production could be inhibited at high salinity concentrations while stimulated at low concentration (5 g·L
), its highest production could reach 50.5%.
.
Influence of transient NaCl addition on the maximum storage ability of PHA
Change in physicochemical properties of sludge with NaCl gradients
Changes of crucial parameters in a typical circle
Changes in maximum PHA content during enrichment and batch assays
[1] | 车雪梅, 司徒卫, 余柳松, 等. 聚羟基脂肪酸酯的应用展望[J]. 生物工程学报, 2018, 34(10): 1531-1542. |
[2] | TAN G Y, CHEN C L, LI L, et al. Start a research on biopolymer polyhydroxyalkanoate (PHA): A review[J]. Polymers, 2014, 6(3): 706-754. doi: 10.3390/polym6030706 |
[3] | ALBUQUERQUE M G E, CONCAS S, BENGTSSON S, et al. Mixed culture polyhydroxyalkanoates production from sugar molasses: The use of a 2-stage CSTR system for culture selection[J]. Bioresource Technology, 2010, 101(18): 7112-7122. doi: 10.1016/j.biortech.2010.04.019 |
[4] | 张庆芳, 杨林海, 周丹丹. 餐厨垃圾废弃物处理技术概述[J]. 中国沼气, 2012, 30(1): 22-26. doi: 10.3969/j.issn.1000-1166.2012.01.005 |
[5] | WANG P, WANG H, QIU Y, et al. Microbial characteristics in anaerobic digestion process of food waste for methane production: A review[J]. Bioresource Technology, 2018, 248: 29-36. doi: 10.1016/j.biortech.2017.06.152 |
[6] | YUAN H, ZHU N. Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion[J]. Renewable & Sustainable Energy Reviews, 2016, 58: 429-438. |
[7] | DAHIYA S, KUMAR A N, CHATTERJEE J S S S, et al. Food waste biorefinery: Sustainable strategy for circular bioeconomy[J]. Bioresource Technology, 2018, 248: 2-12. doi: 10.1016/j.biortech.2017.07.176 |
[8] | REDDY M V, MOHAN S V. Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia[J]. Bioresource Technology, 2012, 103(1): 313-321. doi: 10.1016/j.biortech.2011.09.040 |
[9] | AMULYA K, JUKURI S, VENKATA M S. Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling[J]. Bioresource Technology, 2015, 188: 231-239. doi: 10.1016/j.biortech.2015.01.070 |
[10] | 王向会, 李广魏, 孟虹, 等. 国内外餐厨垃圾处理状况概述[J]. 环境卫生工程, 2005, 13(2): 41-43. doi: 10.3969/j.issn.1005-8206.2005.02.013 |
[11] | 苟剑锋, 郝建青, 曾正中, 等. 天水市餐厨垃圾组分特征实验分析[J]. 环境工程, 2014, 32(9): 130-133. |
[12] | 吴爽. 上海某地区餐厨垃圾特性分析[J]. 环境卫生工程, 2016, 24(5): 70-71. doi: 10.3969/j.issn.1005-8206.2016.05.023 |
[13] | PASSANHA P, KEDIA G, DINSDALE R M, et al. The use of NaCl addition for the improvement of polyhydroxyalkanoate production by Cupriavidusnecator[J]. Bioresource Technology, 2014, 163: 287-294. doi: 10.1016/j.biortech.2014.04.068 |
[14] | PALMEIRO-SáNCHEZ T, FRA-VáZQUEZ A, REY-MARTíNEZ N, et al. Transient concentrations of NaCl affect the PHA accumulation in mixedmicrobial culture[J]. Journal of Hazardous Materials, 2016, 306: 332-339. doi: 10.1016/j.jhazmat.2015.12.032 |
[15] | 张玉静, 蒋建国, 王佳明. pH值对餐厨垃圾厌氧发酵产挥发性脂肪酸的影响[J]. 中国环境科学, 2013, 33(4): 680-684. doi: 10.3969/j.issn.1000-6923.2013.04.015 |
[16] | CHEN Z, HUANG L, WEN Q, et al. Effects of sludge retention time, carbon and initial biomass concentrations on selection process: From activated sludge to polyhydroxyalkanoate accumulating cultures[J]. Journal of Environmental Sciences, 2016, 52(2): 76-84. |
[17] | CHEN Z, GUO Z, WEN Q, et al. Modeling polyhydroxyalkanoate (PHA) production in a newly developed aerobic dynamic discharge (ADD) culture enrichment process[J]. Chemical Engineering Journal, 2016, 298: 36-43. doi: 10.1016/j.cej.2016.03.133 |
[18] | 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
[19] | WEN Q, CHEN Z, WANG C, et al. Bulking sludge for PHA production: Energy saving and comparative storage capacity with well-settled sludge[J]. Journal of Environmental Sciences, 2012, 24(10): 1744-1752. doi: 10.1016/S1001-0742(11)61005-X |
[20] | LI X Y, YANG S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge[J]. Water Research, 2007, 41(5): 1022-1030. doi: 10.1016/j.watres.2006.06.037 |
[21] | GERHARDT P, MURRAY R G E, WOOD W A, et al. Methods for General and Molecular Bacteriology[M]. Washington: American Society for Microbiology, 1994. |
[22] | NG H Y, ONG S L, NG W J. effects of sodium chloride on the performance of a sequencing batch reactor[J]. Journal of Environmental Engineering, 2005, 131(11): 1557-1564. doi: 10.1061/(ASCE)0733-9372(2005)131:11(1557) |
[23] | HE H, YANG C, ZENG G, et al. Influence of salinity on microorganisms in activated sludge processes: A review[J]. International Biodeterioration & Biodegradation, 2016, 119: 520-527. |
[24] | SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review[J]. Biotechnology Advances, 2010, 28(6): 882-894. doi: 10.1016/j.biotechadv.2010.08.001 |
[25] | 崔飞剑, 李平, 朱凤霞, 等. 盐度对SBR处理垃圾渗滤液污泥胞外聚合物及污泥特性的影响[J]. 环境工程, 2017, 35(3): 23-27. doi: 10.11835/j.issn.1005-2909.2017.03.006 |
[26] | CORTéS-LORENZO C, RODRíGUEZ-DíAZ M, LóPEZ-LOPEZ C, et al. Effect of salinity on enzymatic activities in a submerged fixed bed biofilm reactor for municipal sewage treatment[J]. Bioresource Technology, 2012, 121: 312-319. |
[27] | WANG Z W, LIU Y, TAY J H. Distribution of EPS and cell surface hydrophobicity in aerobic granules[J]. Applied Microbiology & Biotechnology, 2005, 69(4): 469-473. |
[28] | CHEN Y, HE H, LIU H, et al. Effect of salinity on removal performance and activated sludge characteristics in sequencing batch reactors[J]. Bioresource Technology, 2017, 249: 890-899. |
[29] | 郝秋霞. 阳离子聚丙烯酰胺用于污泥脱水的研究[J]. 图书情报导刊, 2010, 20(23): 175-177. doi: 10.3969/j.issn.1005-6033.2010.23.075 |
[30] | DIONISI D, MAJONE M, VALLINI G, et al. Effect of the applied organic load rate on biodegradable polymer production by mixed microbial cultures in a sequencing batch reactor[J]. Biotechnology and Bioengineering, 2006, 93(1): 76-88. doi: 10.1002/(ISSN)1097-0290 |
[31] | HONG J, LI W, LIN B, et al. Deciphering the effect of salinity on the performance of submerged membrane bioreactor for aquaculture of bacterial community[J]. Desalination, 2013, 316: 23-30. doi: 10.1016/j.desal.2013.01.015 |
[32] | REID E, LIU X, JUDD S. Effect of high salinity on activated sludge characteristics and membrane permeability in an immersed membrane bioreactor[J]. Journal of Membrane Science, 2006, 283: 164-171. doi: 10.1016/j.memsci.2006.06.021 |
[33] | OBRUCA S, SEDLACEK P, KOLLER M, et al. Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications[J]. Biotechnology Advances, 2018, 36: 856-870. doi: 10.1016/j.biotechadv.2017.12.006 |