2.新疆大学建筑工程学院,乌鲁木齐 830047
1.Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environment and Municipal Engineering, Xi′an University of Architecture and Technology, Xi′an 710055, China
2.Institute of Civil Engineering and Architecture, Xinjiang University, Urumqi 830047, China
河流污染状态一般采用化学水质或生物等指标单独描述,目前尚缺少简便易行且可同时从化学与生物角度进行定量描述的指标。针对这一问题,采用三维荧光光谱、紫外吸收光谱与呼吸图谱联用的分析方法研究了纳污河、自然水体与污水处理厂各处理单元水样的溶解性有机物(DOM)的空间分布特征与河流微生物的呼吸特征。结果表明,光谱法可快速对河流有机污染物的种类进行辨别,而呼吸图谱具有识别河流自净能力的特点,其中类色氨酸(T峰与D峰)、类酪氨酸(S峰)、腐殖质(C峰)、富里酸(A峰)是指示不同污染程度的重要指标。通过呼吸图谱与荧光光谱联用(T峰)可快速对污染程度和自净能力进行区分,从而为河流的管理与自净能力的恢复提供参考。
River pollution status is generally described using chemical water quality or biological activity index. However, the reports on the easy-to-use index from both chemical and biological perspectives were limited. Three-dimensional fluorescence spectroscopy, ultraviolet absorption spectroscopy and respirogram were employed to study the spatial distribution characteristics of dissolved organic matter (DOM) and bacteria respirogram in the river and the wastewater treatment plant, respectively. Results showed that the spectroscopy method could quickly discriminate the types of river pollutants, and respirogram was characterized by identifying the self-purification ability of rivers. The tryptophan (peaks T and peak D), tyrosine-like (peak S), humic acid (peak C) and fulvic acid (peak A) were important indicators that could well indicate the degree of different pollution status. Therefore, the hybrid use of respirogram and fluorescence spectrum (peak T) can well indicate the pollution status and the biological purification capability, which could provide reference for the promising application in river management.
.
Three-dimensional fluorescence spectra of representative sections
Comparison of organic pollution indicators of three types of water bodies
for characterizing?river?pollution?degree?and?self-purification?ability
Characteristic parameters of water quality, spectra and respirogram of different sections of three types of water bodies
[1] | VAGNETTI R, MIANA P, FABRIS M, et al. Self-purification ability of a resurgence stream[J]. Chemosphere, 2003, 52(10): 1781-1795. doi: 10.1016/S0045-6535(03)00445-4 |
[2] | DEMARS B O L, MANSON J R. Temperature dependence of stream aeration coefficients and the effect of water turbulence: A critical review[J]. Water Research, 2013, 47(1): 1-15. doi: 10.1016/j.watres.2012.09.054 |
[3] | 曹昌丽, 何桂英. 城镇化河流溶解性有机质的荧光特性与水质相关性: 以宁波市北仑区芦江为例[J]. 环境科学, 2018, 39(4): 1560-1567. |
[4] | HUDSON N, BAKER A, REYNOLDS D. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters: A review[J]. River Research and Applications, 2007, 23(6): 631-649. doi: 10.1002/(ISSN)1535-1467 |
[5] | 姚璐璐, 涂响, 于会彬. 三维荧光区域积分评估城市污水中溶解性有机物去除[J]. 环境工程学报, 2013, 7(2): 411-416. |
[6] | 帅磊, 李卫华, 申慧彦. 三维荧光光谱评价污水处理厂COD去除效率[J]. 环境工程学报, 2016, 10(4): 2127-2131. doi: 10.12030/j.cjee.20160486 |
[7] | REYNOLDS D M, AHMAD S R. Rapid and direct determination of wastewater BOD values using a fluorescence technique[J]. Water Research, 1997, 31(8): 2012-2018. doi: 10.1016/S0043-1354(97)00015-8 |
[8] | KUZNIZ T, HALOT D, MIGNANI A G, et al. Instrumentation for the monitoring of toxic pollutants in water resources by means of neural network analysis of absorption and fluorescence spectra[J]. Sensors and Actuators B: Chemical, 2007, 121(1): 231-237. doi: 10.1016/j.snb.2006.09.012 |
[9] | 吴静, 曹知平, 谢超波. 石化废水的三维荧光光谱特征[J]. 光谱学与光谱分析, 2011, 31(9): 2437-2441. |
[10] | 何伟, 白泽琳, 李一龙. 溶解性有机质特性分析与来源解析的研究进展[J]. 环境科学学报, 2016, 36(2): 359-372. |
[11] | 蒋绍阶, 刘宗源. UV254作为水处理中有机物控制指标的意义[J]. 重庆建筑大学学报, 2002, 24(2): 61-65. |
[12] | 黄廷林, 方开凯, 张春华. 利用UV-Vis及EEMs对比冬季完全混合下两个不同特征水库溶解性有机物的光学特性[J]. 环境科学, 2016, 37(12): 4577-4585. |
[13] | GONZáLEZ S O, ALMEIDA C A, CALDERóN M, et al. Assessment of the water self-purification capacity on a river affected by organic pollution: Application of chemometrics in spatial and temporal variations[J]. Environmental Science & Pollution Research International, 2014, 21(18): 10583-10593. |
[14] | KARRASCH B, PARRA O, CID H, et al. Effects of pulp and paper mill effluents on the microplankton and microbial self-purification capabilities of the Biobío River, Chile[J]. Science of the Total Environment, 2006, 359(1/2/3): 194-208. |
[15] | 赵长森, 夏军, 王纲胜. 淮河流域水生态环境现状评价与分析[J]. 环境工程学报, 2008, 2(12): 1698-1704. |
[16] | 董雯, 李怀恩, 李家科. 城市重污染河流水质特征分析: 以皂河为例[J]. 水力发电学报, 2012, 31(4): 72-77. |
[17] | 薛亮, 赵振斌, 延军平. 西安市灞河湿地鸟类生境构成与保护价值评价研究[J]. 干旱区资源与环境, 2008, 22(8): 116-119. doi: 10.3969/j.issn.1003-7578.2008.08.022 |
[18] | 黄满红, 李咏梅, 顾国维, 等. 呼吸计量法在活性污泥系统废水特性测定中的应用[J]. 工业水处理, 2005, 25(9): 58-60. doi: 10.3969/j.issn.1005-829X.2005.09.018 |
[19] | CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2015, 37(24): 5701-5710. |
[20] | HENDERSON R K, BAKER A, MURPHY K R, et al. Fluorescence as a potential monitoring tool for recycled water systems: A review[J]. Water Research, 2009, 43(4): 863-881. doi: 10.1016/j.watres.2008.11.027 |
[21] | OHNO T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter[J]. Environmental Science & Technology, 2002, 36(19): 742-746. |
[22] | MAQBOOL T, CHO J, HUR J. Spectroscopic descriptors for dynamic changes of soluble microbial products from activated sludge at different biomass growth phases under prolonged starvation[J]. Water Research, 2017, 123: 751-760. doi: 10.1016/j.watres.2017.07.033 |