徐克猛1,
陈永亮1,2,,
武诗怡1,
齐辰晖1,
肖华平1
1.武汉科技大学资源与环境工程学院,武汉 430081
2.冶金矿产资源高效利用与造块湖北省重点实验室,武汉 430081
基金项目: 国家重点基础研究发展计划项目2017YFC070330012
国家自然科学基金资助项目41102218
湖北省教育厅科学技术研究项目Q20141108
国家级大学生创新创业训练计划项目201810488009国家重点基础研究发展计划项目(2017YFC070330012)
国家自然科学基金资助项目(41102218)
湖北省教育厅科学技术研究项目(Q20141108)
国家级大学生创新创业训练计划项目(201810488009)
Preparation of autoclaved aerated concrete with construction waste and alkali residue
ZHANG Huiling1,2,,XU Kemeng1,
CHEN Yongliang1,2,,
WU Shiyi1,
QI Chenhui1,
XIAO Huaping1
1.College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
2.Hubei Province Key Laboratory for Efficient Utilization and Agglomeration for Metallurgic Mineral Resources, Wuhan 430081, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:为实现建筑垃圾和碱渣二次资源的综合利用,考察利用建筑垃圾和碱渣为主要原料制备蒸压加气混凝土的可行性。通过测试蒸压加气混凝土的干密度和抗压强度,确定适宜的原料配比和蒸压养护条件,并通过XRD、SEM和FTIR对蒸压加气混凝土样品的矿物组成、微观结构进行分析。结果表明,在建筑垃圾、碱渣、石灰、水泥、石膏、铝粉掺量分别为50%、20%、10%、18%、2%和0.1%、蒸压压力1.5 MPa、蒸压时间6 h的条件下,制备的蒸压加气混凝土性能达到《蒸压加气混凝土砌块》(GB 11968-2006)A7.5、B07级要求,且蒸压加气混凝土样品的主要物相为托贝莫来石、半结晶CSH(I)和少量方解石、石英和硬石膏,托贝莫来石、硬石膏和水化硅酸钙凝胶相互交错形成多孔结构,部分Si—O—Si和Al—O—Al断裂,[AlO4]取代了归属于[SiO4]中的Si—O—Si。碱渣的添加有助于激发建筑垃圾的活性,生成强度更高的含铝托贝莫来石,形成低密度高强度的蒸压加气混凝土。
关键词: 蒸压加气混凝土/
建筑垃圾资源化/
碱渣再利用/
混凝土抗压强度
Abstract:With the objective of utilizing the secondary resources of construction waste and alkali residue, the feasibility of preparing autoclaved aerated concrete (AAC) with construction waste and alkali residue as the main raw materials was investigated in this study. The properties of dry density and compressive strength of the AAC were tested to determine the mixing ratio of raw materials and autoclave curing conditions, and its phase compositions and microstructure were characterized by XRD, SEM and FTIR. The results indicate that the optimal mixing ratios of raw materials were 50% construction waste, 20% alkali slag, 10% cement, 18% quicklime, 2% gypsum and 0.1% aluminum powder. The suitable autoclave pressure and time were 1.5 MPa and 6 h, respectively. The physical properties of prepared AAC samples under above optimal conditions could meet the requirements for A7.5, B07 grade of autoclaved aerated concrete block (GB 11968-2006). The main phases of AAC samples were tobemorite, CSH(I) with a small amount of calcite, quartz and anhydrite. Tobemorite and anhydrite were interdigitated into CSH gel to form porous structure. Part of Si—O—Si and Al—O—Al in AAC samples was broken, [AlO4] replaced Si—O—Si belonging to [SiO4]. The addition of alkali residue could activate the construction waste reactivity, and aluminum-containing tobermorite with high strength formed, which resulted in AAC formation with low density and high strength.
Key words:autoclaved aerated concrete/
construction waste recycling/
alkali residue reuse/
concrete compressive strength.
[1] | 薛翠真, 申爱琴, 郭寅川, 等. 碱激发和复合激发下建筑垃圾砖粉活性研究[J]. 材料导报, 2016, 30(10): 130-134. |
[2] | GOMES H I, MAYES W M, ROGERSON M, et al. Alkaline residues and the environment: A review of impacts, management practices and opportunities[J]. Journal of Cleaner Production, 2016, 112(4): 3571-3582. |
[3] | YANG L, YAN Y, HU Z. Utilization of phosphogypsum for the preparation of non-autoclaved aerated concrete[J]. Construction & Building Materials, 2013, 44(7): 600-606. |
[4] | 王雨利, 刘素霞, 罗树琼, 等. 利用固体废弃物制备蒸压加气混凝土砌块的研究[J]. 河南理工大学学报(自然科学版), 2012, 31(5): 613-616. |
[5] | 中华人民共和国建筑材料工业部. 蒸压加气混凝土砌块: GB 11968-2006[S]. 北京: 中国标准出版社, 2006. |
[6] | 应姗姗, 钱晓倩, 詹树林. 利用陶瓷生产尾泥制备高铝质蒸压加气混凝土[J]. 建筑材料学报, 2015, 18(2): 291-295. |
[7] | 白魁, 曾兴华. 利用钨尾矿渣制备蒸压加气混凝土砌块研究[J]. 江西建材, 2013, 12(5): 26-28. |
[8] | HUANG X Y, NI W, CUI W H, et al. Preparation of autoclaved aerated concrete using copper tailings and blast furnace slag[J]. Construction & Building Materials, 2012, 27(1): 1-5. |
[9] | 许新兵, 李生彬, 任小娜, 等. 建筑垃圾的处理及资源化利用[J]. 资源节约与环保, 2016, 6(1): 90-91. |
[10] | 中华人民共和国建筑材料工业部. 蒸压加气混凝土性能实验方法: GB/T 11969-2008[S]. 北京: 中国标准出版社, 2008. |
[11] | 贾韶辉, 刘恒波, 蒋琨, 等. 利用赤泥研制蒸压加气混凝土[J]. 砖瓦, 2011, 6(7): 44-46. |
[12] | Ró?YCKA A, PICHóR W. Effect of perlite waste addition on the properties of autoclaved aerated concrete[J]. Construction & Building Materials, 2016, 120: 65-71. |
[13] | CAI L X, |
[14] | WANG C L, NI W, ZHANG S Q, et al. Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings[J]. Construction & Building Materials, 2016, 104: 109-115. |
[15] | 郭幻, 宋存义. 烧结脱硫灰制备蒸压加气混凝土砌块的研究[J]. 环境工程学报, 2011, 5(3): 689-695. |
[16] | |
[17] | CAO Z , CAO Y D , ZHANG J S , et al. Preparation and characterization of high-strength calcium silicate boards from coal-fired industrial solid wastes[J]. International Journal of Minerals Metallurgy and Materials, 2015, 22(8): 892-900. |
[18] | KURAMA H, TOPCU? B, KARAKURT C. Properties of the autoclaved aerated concrete produced from coal bottom ash[J]. Journal of Materials Processing Technology, 2009, 209(2): 767-773. |
[19] | 王爱勤, 杨南如, 钟白茜,等. 粉煤灰水泥的水化动力学[J]. 硅酸盐学报, 1997, 25(2): 123-129. |
[20] | 施惠生, 夏明, 郭晓潞. 粉煤灰基地聚合物反应机理及各组分作用的研究进展[J]. 硅酸盐学报, 2013, 41(7): 972-980. |
[21] | DROCHYTKA R, HELANOVá E. Development of microstructure of the fly ash aerated concrete in time[J]. Procedia Engineering, 2015, 108: 624-631. |
[22] | CONG X Y, LU S, YAO Y, et al. Fabrication and characterization of self-ignition coal gangue autoclaved aerated concrete[J]. Materials & Design, 2016, 97: 155-162. |
Turn off MathJax -->
点击查看大图
计量
文章访问数:980
HTML全文浏览数:929
PDF下载数:114
施引文献:0
出版历程
刊出日期:2019-02-02
-->
利用建筑垃圾和碱渣制备蒸压加气混凝土
张惠灵1,2,,徐克猛1,
陈永亮1,2,,
武诗怡1,
齐辰晖1,
肖华平1
1.武汉科技大学资源与环境工程学院,武汉 430081
2.冶金矿产资源高效利用与造块湖北省重点实验室,武汉 430081
基金项目: 国家重点基础研究发展计划项目2017YFC070330012 国家自然科学基金资助项目41102218 湖北省教育厅科学技术研究项目Q20141108 国家级大学生创新创业训练计划项目201810488009国家重点基础研究发展计划项目(2017YFC070330012) 国家自然科学基金资助项目(41102218) 湖北省教育厅科学技术研究项目(Q20141108) 国家级大学生创新创业训练计划项目(201810488009)
关键词: 蒸压加气混凝土/
建筑垃圾资源化/
碱渣再利用/
混凝土抗压强度
摘要:为实现建筑垃圾和碱渣二次资源的综合利用,考察利用建筑垃圾和碱渣为主要原料制备蒸压加气混凝土的可行性。通过测试蒸压加气混凝土的干密度和抗压强度,确定适宜的原料配比和蒸压养护条件,并通过XRD、SEM和FTIR对蒸压加气混凝土样品的矿物组成、微观结构进行分析。结果表明,在建筑垃圾、碱渣、石灰、水泥、石膏、铝粉掺量分别为50%、20%、10%、18%、2%和0.1%、蒸压压力1.5 MPa、蒸压时间6 h的条件下,制备的蒸压加气混凝土性能达到《蒸压加气混凝土砌块》(GB 11968-2006)A7.5、B07级要求,且蒸压加气混凝土样品的主要物相为托贝莫来石、半结晶CSH(I)和少量方解石、石英和硬石膏,托贝莫来石、硬石膏和水化硅酸钙凝胶相互交错形成多孔结构,部分Si—O—Si和Al—O—Al断裂,[AlO4]取代了归属于[SiO4]中的Si—O—Si。碱渣的添加有助于激发建筑垃圾的活性,生成强度更高的含铝托贝莫来石,形成低密度高强度的蒸压加气混凝土。
English Abstract
Preparation of autoclaved aerated concrete with construction waste and alkali residue
ZHANG Huiling1,2,,XU Kemeng1,
CHEN Yongliang1,2,,
WU Shiyi1,
QI Chenhui1,
XIAO Huaping1
1.College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
2.Hubei Province Key Laboratory for Efficient Utilization and Agglomeration for Metallurgic Mineral Resources, Wuhan 430081, China
Keywords: autoclaved aerated concrete/
construction waste recycling/
alkali residue reuse/
concrete compressive strength
Abstract:With the objective of utilizing the secondary resources of construction waste and alkali residue, the feasibility of preparing autoclaved aerated concrete (AAC) with construction waste and alkali residue as the main raw materials was investigated in this study. The properties of dry density and compressive strength of the AAC were tested to determine the mixing ratio of raw materials and autoclave curing conditions, and its phase compositions and microstructure were characterized by XRD, SEM and FTIR. The results indicate that the optimal mixing ratios of raw materials were 50% construction waste, 20% alkali slag, 10% cement, 18% quicklime, 2% gypsum and 0.1% aluminum powder. The suitable autoclave pressure and time were 1.5 MPa and 6 h, respectively. The physical properties of prepared AAC samples under above optimal conditions could meet the requirements for A7.5, B07 grade of autoclaved aerated concrete block (GB 11968-2006). The main phases of AAC samples were tobemorite, CSH(I) with a small amount of calcite, quartz and anhydrite. Tobemorite and anhydrite were interdigitated into CSH gel to form porous structure. Part of Si—O—Si and Al—O—Al in AAC samples was broken, [AlO4] replaced Si—O—Si belonging to [SiO4]. The addition of alkali residue could activate the construction waste reactivity, and aluminum-containing tobermorite with high strength formed, which resulted in AAC formation with low density and high strength.