张松1,
戴波1,
顾明言1,
史德明3,
夏勇军3,
胡笳3
1.安徽工业大学能源与环境学院,马鞍山 243002
2.冶金减排与资源综合利用教育部重点实验室,马鞍山 243002
3.安徽欣创节能环保科技股份有限公司,马鞍山 243071
基金项目: 国家重点研发计划项目(2017YFB0601805)
Preparation of low-temperature DeNOx catalyst of supported vanadium phosphate and its resistance to sulfur dioxide and water vapor
JIA Yong1,2,,ZHANG Song1,
DAI Bo1,
GU Mingyan1,
SHI Deming3,
XIA Yongjun3,
HU Jia3
1.School of Energy and Environment, Anhui University of Technology, Maanshan 243002, China
2.Metallurgical Emission Reduction & Resource Recycling, Ministry of Education, Maanshan 243002, China
3.Anhui Xinchuang Energy & Environmental Protection Science & Techmology Co.Ltd., Maanshan 243071, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:针对目前低温脱硝催化剂抗硫抗水性较差的不足,以TiO2为载体负载活性组分V2O5,利用磷酸调控表面酸性,制备了磷酸氧钒催化剂VPO/TiO2,并实验研究了SO2和水蒸气对其脱硝活性的影响。结果表明:控制P与V的摩尔比为1/5,活性组分(VPO)负载量为10%,焙烧温度为400 ℃时,催化剂脱硝性能最好,180~400 ℃温度范围内脱硝率高于98%;反应温度为200 ℃,烟气中SO2体积分数为200×10-6~800×10-6和水蒸气体积分数为4%时,催化剂的活性无明显下降。添加磷酸能够促使催化剂表面生成VOPO4、(VO)2P2O7及V4+/V5+氧化还原电对,提高了催化剂的低温脱硝活性。磷酸可增强催化剂的表面酸性,减少了SO2的表面吸附及其与活性组分的反应。另外,催化剂表面以介孔为主,可提高未被水分子占据的活性位点量,FT-IR图谱显示抗硫抗水测试后的VPO/TiO2表面未发现有硫酸根生成,VPO/TiO2表现出较强的抗SO2和水蒸气毒化的性能。负载型磷酸氧钒催化剂具有较高的脱硝活性和较强的抗硫抗水性能。
关键词: 低温脱硝催化剂/
工业烟气脱硝/
磷酸氧钒/
抗硫抗水/
催化活性
Abstract:In view of poor resistance to sulfur and water vapor for the low temperature DeNOx catalyst, a type of vanadium phosphate catalyst VPO/TiO2 was prepared through doping active constituent V2O5 on TiO2 and regulating the surface acidity with phosphoric acid in this study, and the effects of SO2 and water vapor on its DeNOx activity were studied. The results showed that the best DeNOx performance of this vanadium phosphate catalyst was obtained at P/V molar ratio of 1/5, 10% active component (VPO) loading and the calcination temperature of 400 ℃, and the corresponding DeNOx efficiency was above 98% at the temperature range of 180~400 ℃. The DeNOx efficiency didn’t decrease at reaction temperature of 200 ℃ when the volume fractions of SO2 and water vapor were 200×10-6~800×10-6 and 4%, respectively. The addition of phosphoric acid could promote the formation of VOPO4, (VO)2P2O7 and redox couples V4+/V5+, which led to the improvement on the low temperature DeNOx activity of the catalyst. Phosphoric acid addition could enhance the surface acidity of vanadium-based catalyst, suppressed SO2 adsorption on the catalyst surface and their reaction to active constituent. In addition, the catalyst surface mainly contained mesoporous structure, which caused the increase of the amount of active sites unoccupied by the water molecules. The FT-IR spectra show that sulfate was not produced on the surface of tested VPO/TiO2 in the presence of SO2 and water vapor. The VPO/TiO2 catalysts show a strong resistance to SO2 and water vapor. Accordingly, the supported vanadium phosphate catalyst in this study had a high catalytic activity and strong sulfur and water resistance.
Key words:low temperature denitrification catalyst/
industrial flue gas denitrification/
vanadium phosphate/
resistance to sulfur and water/
catalytic activity.
[1] | 环境保护部科技标准司. 炼焦化学工业污染物排放标准: GB 16171-2012 [S]. 北京: 中国环境科学出版社, 2012. |
[2] | 环境保护部科技标准司. 钢铁烧结、球团工业大气污染物排放标准: GB 28662-2012 [S]. 北京: 中国环境科学出版社, 2012. |
[3] | HE Y Y, MICHAEL E F, ZHU M H, et al. Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5-WO3/TiO2 catalysts [J]. Applied Catalysis B: Environmental, 2016, 193: 141-150. |
[4] | 张亚平, 郭婉秋, 王龙飞, 等. V2O5/CeO2催化剂用于低温NH3-SCR的性能研究[J]. 催化学报, 2015, 36(10): 1701-1710. |
[5] | ZANG S, ZHANG G, QIU W, et al. Resistance to SO2 poisoning of V2O5/TiO2 -PILC catalyst for the selective catalytic reduction of NO by NH3 [J]. Chinese Journal of Catalysis, 2016, 37(6): 888-897. |
[6] | WAN Y, ZHAO W, YU T, et al. Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3[J]. Applied Catalysis B: Environmental, 2014, 148-149(6): 114-122. |
[7] | LIU J, LIU J, ZHAO Z H, et al. Synthesis of a chabazite‐supported copper catalyst with full mesopores for selective catalytic reduction of nitrogen oxides at low temperature [J]. Chinese Journal of Catalysis, 2016, 37(5): 750-759. |
[8] | ROYER S, DUPREZ D, CAN F, et al. Perovskites as substitutes of noble metals for heterogeneous catalysis: Dream or reality [J]. Chemical Reviews, 2014, 114(20): 10292-10368. |
[9] | 王瑞, 归柯庭, 梁辉. Ce的掺杂对负载型催化剂LaMnO/赤铁矿脱硝性能的影响[J]. 化工进展, 2016, 35(S2): 192-199. |
[10] | QI K, XIE J, FANG D, et al. Performance enhancement mechanism of Mn-based catalysts prepared under N2 for NOx removal: Evidence of the poor crystallization and oxidation of MnOx[J]. Chinese Journal of Catalysis, 2017, 38(5): 845-851. |
[11] | 王明洪, 王亮亮, 刘俊, 等. 过渡金属对选择性催化还原脱硝CeO2@TiO2催化剂低温活性的促进作用[J]. 燃料化学学报, 2017, 45(4): 497-504. |
[12] | 沈伯雄, 刘亭, 杨婷婷, 等. 低温SCR脱硝催化剂过渡金属氧化物改性及硫中毒失活机制研究[J]. 环境科学, 2009, 30(8): 2204-2209. |
[13] | JIANG B, YUE L, WU Z. Low-temperature selective catalytic reduction of NO on MnOx /TiO2 prepared by different methods[J]. Journal of Hazardous Materials, 2009, 162(2): 1249-1254. |
[14] | WANG Z H, LIN F W, JING S D, et al. Ceria substrate-oxide composite as catalyst for highly efficient catalytic oxidation of NO by O2[J]. Fuel, 2016, 166: 352-360. |
[15] | ZHANG Y P, GUO W Q, Xu H T, et al. Characterization and activity of V2O5-CeO2/TiO2-ZrO2 catalysts for NH3-selective catalytic reduction of NOx [J]. Chinese Journal of Catalysis, 2015, 36(10): 1701-1710. |
[16] | ZHANG J X, ZHANG S L, CAI W, et al. Effect of chromium oxide as active site over TiO2-PILC for selective catalytic oxidation of NO [J]. Journal of Environmental Sciences, 2013, 25(12): 2492-2497. |
[17] | PAVULESCU V I, GRANGE P, DELMON B. Catalytic removal of NO [J]. Catalysis Today, 1998, 46: 233-316. |
[18] | 李小海, 张舒乐, 贾勇, 等. H2O和SO2对Ce(1)Mn(3)Ti催化剂催化氧化NO性能的影响[J]. 燃料化学学报, 2012, 40(4): 866-871. |
[19] | LI L D, SHEN Q, CHENG J, et al. Catalytic oxidation of NO over TiO2 supported platinum clusters. Ⅱ: Mechanism study by situ FTIR spectra [J]. Catalysis Today, 2010, 158(3/4): 361-369. |
[20] | BOND G C. Vanadium oxide monolayer catalysts preparation characterization and catalytic activity [J]. Applied Catalysis, 1991, 71(1): 1-31. |
[21] | BUSCA G, CENTI G, TRIFIRO F, et al. Surface acidity of vanadyl pyrophosphate active phase in n-butane selective oxidation [J]. Journal of Physical Chemistry, 1986, 90(7): 1337-1344. |
[22] | 姜烨, 高翔, 吴卫红. H2O和SO2对V2O5/TiO2催化剂选择性催化还原烟气脱硝性能的影响[J]. 中国电机工程学报, 2013, 33(20): 28-33. |
[23] | 段瑞瑞. V4+/V5+比值调变影响因素及其V4+和V5+转化的氧化还原速率与SCR脱硝活性[D]. 哈尔滨: 哈尔滨工程大学, 2014. |
[24] | FENG X Z, YAO Y, SU Q, et al. Vanadium pyrophosphate oxides: The role of preparation chemistry in determining renewable acrolein production from glycerol dehydration [J]. Applied Catalysis B: Environmental, 2015, 164: 31-39. |
[25] | 曾炜, 顾龙勤, 徐俊峰, 等. 不同P与V比的Mo/VPO催化剂物相组成及其催化性能[J]. 工业催化, 2014, 22(8): 595-598. |
[26] | TOPS?E N Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line fourier transform infrared spectroscopy [J]. Science, 1994, 265(5176): 1217-1219. |
[27] | NOVA I, CIARDELLI C, TRONCONI E, et al. NH3-NO/NO2, chemistry over V-based catalysts and its role in the mechanism of the fast SCR reaction[J]. Catalysis Today, 2006, 114(1): 3-12. |
[28] | JIA Y, DU D Q, BAI J C, et al. Characterization and activity of N doped TiO2 supported VPO catalysts for NO oxidation [J]. Atmospheric Pollution Research, 2015, 6(2): 184-190. |
[29] | LI L D, SHEN Q, CHENG J, et al. Catalytic oxidation of NO over TiO2 supported platinum clusters. Ⅱ: Mechanism study by situ FTIR spectra[J]. Catalysis Today, 2010, 158(3/4): 361-369. |
[30] | GAN L, GUO F, YU J, et al. Improved low-temperature activity of V2O5-WO3/TiO2 for denitration using different vanadium precursors [J]. Catalysts, 2016, 6(2): 25-40. |
[31] | LIN C H, BAI H. Surface acidity over vanadia/titania catalyst in the selective catalytic reduction for NO removal: In situ DRIFTS study [J]. Applied Catalysis B: Environmental, 2003, 42(3): 279-287. |
[32] | CHEN T, GUAN B, LIN H, et al. In situ DRIFTS study of the mechanism of low temperature selective catalytic reduction over manganese-iron oxides [J]. Chinese Journal of Catalysis, 2014, 35(3): 294-301. |
[33] | CHIRRANJIT S, SNEHA S, ANIRUDDHA M, et al. Synthesis, characterization of VPO catalyst dispersed on mesoporous silica surface and catalytic activity for cyclohexane oxidation reaction[J]. Microporous and Mesoporous Materials, 2016, 223: 121-128. |
[34] | GUO X Y, CAL B, WILLIAM H, et al. Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-fired systems [J]. Applied Catalysis B: Environmental, 2009, 92(1/2): 30-40. |
[35] | CHEN J P, YANG R T. Selective catalytic reduction of NO with NH3 on SO42-/TiO2 superacid catalyst[J]. Journal of Catalysis, 1993, 139(1): 277-288. |
[36] | LU Q, PANG D, ZHANG C, et al. In situ IR studies of Co and Ce doped Mn/TiO2, catalyst for low-temperature selective catalytic reduction of NO with NH3 [J]. Applied Surface Science, 2015, 357(3): 189-196. |
[37] | NIE J, WU X, MA Z, et al. Tailored temperature window of MnOx -CeO2, SCR catalyst by addition of acidic metal oxides [J]. Chinese Journal of Catalysis, 2014, 35(8): 1281-1288. |
[38] | CHEN T, GUAN B, LIN H, et al. In situ DRIFTS study of the mechanism of low temperature selective catalytic reduction over manganese-iron oxides [J]. Chinese Journal of Catalysis, 2014, 35(3): 294-301. |
Turn off MathJax -->
点击查看大图
计量
文章访问数:1174
HTML全文浏览数:1063
PDF下载数:130
施引文献:0
出版历程
刊出日期:2019-01-08
-->
负载型磷酸氧钒低温脱硝催化剂的制备及其抗硫抗水性能
贾勇1,2,,张松1,
戴波1,
顾明言1,
史德明3,
夏勇军3,
胡笳3
1.安徽工业大学能源与环境学院,马鞍山 243002
2.冶金减排与资源综合利用教育部重点实验室,马鞍山 243002
3.安徽欣创节能环保科技股份有限公司,马鞍山 243071
基金项目: 国家重点研发计划项目(2017YFB0601805)
关键词: 低温脱硝催化剂/
工业烟气脱硝/
磷酸氧钒/
抗硫抗水/
催化活性
摘要:针对目前低温脱硝催化剂抗硫抗水性较差的不足,以TiO2为载体负载活性组分V2O5,利用磷酸调控表面酸性,制备了磷酸氧钒催化剂VPO/TiO2,并实验研究了SO2和水蒸气对其脱硝活性的影响。结果表明:控制P与V的摩尔比为1/5,活性组分(VPO)负载量为10%,焙烧温度为400 ℃时,催化剂脱硝性能最好,180~400 ℃温度范围内脱硝率高于98%;反应温度为200 ℃,烟气中SO2体积分数为200×10-6~800×10-6和水蒸气体积分数为4%时,催化剂的活性无明显下降。添加磷酸能够促使催化剂表面生成VOPO4、(VO)2P2O7及V4+/V5+氧化还原电对,提高了催化剂的低温脱硝活性。磷酸可增强催化剂的表面酸性,减少了SO2的表面吸附及其与活性组分的反应。另外,催化剂表面以介孔为主,可提高未被水分子占据的活性位点量,FT-IR图谱显示抗硫抗水测试后的VPO/TiO2表面未发现有硫酸根生成,VPO/TiO2表现出较强的抗SO2和水蒸气毒化的性能。负载型磷酸氧钒催化剂具有较高的脱硝活性和较强的抗硫抗水性能。
English Abstract
Preparation of low-temperature DeNOx catalyst of supported vanadium phosphate and its resistance to sulfur dioxide and water vapor
JIA Yong1,2,,ZHANG Song1,
DAI Bo1,
GU Mingyan1,
SHI Deming3,
XIA Yongjun3,
HU Jia3
1.School of Energy and Environment, Anhui University of Technology, Maanshan 243002, China
2.Metallurgical Emission Reduction & Resource Recycling, Ministry of Education, Maanshan 243002, China
3.Anhui Xinchuang Energy & Environmental Protection Science & Techmology Co.Ltd., Maanshan 243071, China
Keywords: low temperature denitrification catalyst/
industrial flue gas denitrification/
vanadium phosphate/
resistance to sulfur and water/
catalytic activity
Abstract:In view of poor resistance to sulfur and water vapor for the low temperature DeNOx catalyst, a type of vanadium phosphate catalyst VPO/TiO2 was prepared through doping active constituent V2O5 on TiO2 and regulating the surface acidity with phosphoric acid in this study, and the effects of SO2 and water vapor on its DeNOx activity were studied. The results showed that the best DeNOx performance of this vanadium phosphate catalyst was obtained at P/V molar ratio of 1/5, 10% active component (VPO) loading and the calcination temperature of 400 ℃, and the corresponding DeNOx efficiency was above 98% at the temperature range of 180~400 ℃. The DeNOx efficiency didn’t decrease at reaction temperature of 200 ℃ when the volume fractions of SO2 and water vapor were 200×10-6~800×10-6 and 4%, respectively. The addition of phosphoric acid could promote the formation of VOPO4, (VO)2P2O7 and redox couples V4+/V5+, which led to the improvement on the low temperature DeNOx activity of the catalyst. Phosphoric acid addition could enhance the surface acidity of vanadium-based catalyst, suppressed SO2 adsorption on the catalyst surface and their reaction to active constituent. In addition, the catalyst surface mainly contained mesoporous structure, which caused the increase of the amount of active sites unoccupied by the water molecules. The FT-IR spectra show that sulfate was not produced on the surface of tested VPO/TiO2 in the presence of SO2 and water vapor. The VPO/TiO2 catalysts show a strong resistance to SO2 and water vapor. Accordingly, the supported vanadium phosphate catalyst in this study had a high catalytic activity and strong sulfur and water resistance.