删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

针对含砷硫酸烧渣酸浸液的铁盐沉淀固砷

本站小编 Free考研考试/2021-12-31

王永良1,,
肖力1,2,
韩培伟1,
鲁永刚1,
钱鹏1,
叶树峰1
1.中国科学院过程工程研究所,多相复杂系统国家重点实验室,北京 100190
2.中国科学院大学化学与化工学院,北京 100049
基金项目: 中国科学院重点部署项目(ZDRW-ZS-2018-1)




Arsenic fixation in acid leaching solution obtained from arsenic-containing pyrite cinder by iron salt precipitation

WANG Yongliang1,,
XIAO Li1,2,
HAN Peiwei1,
LU Yonggang1,
QIAN Peng1,
YE Shufeng1
1.State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
2.School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

-->

摘要
HTML全文
(0)(0)
参考文献(24)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为考察含砷硫酸烧渣中酸浸脱砷效果和铁盐沉淀固砷行为,采用常温常压酸浸法脱除硫酸烧渣中的砷,并对进入浸出液中的砷以铁盐沉淀的形式脱除,进而对沉淀渣的浸出毒性进行研究。同时,研究了磨矿细度、酸浓度、固液比、浸出时间对硫酸烧渣中砷脱除效率的影响。结果表明,通过控制浸出参数可以将硫酸烧渣中砷的质量分数降低到0.2%以下,通过调节浸出液的pH和Fe/As摩尔比将其中的砷以沉淀的形式脱除。当Fe/As > 2、pH = 4~6时,溶液中砷浓度降到了0.5 mg·L-1以下。沉淀砷渣主要是以非晶态的形式存在,提高铁砷比有利于提高砷渣稳定性,从而降低浸出毒性。在Fe/As = 3、pH = 6.04~6.22的条件下,得到的沉淀渣的浸出毒性为0.711 mg·L-1。因此,通过酸浸脱除硫酸烧渣中的砷,进而采用铁盐沉淀的方法能够实现硫酸烧渣中砷的安全处置。
关键词: 硫酸烧渣/
预处理/
酸浸脱砷/
铁盐沉淀固砷

Abstract:In order to investigate the effect of arsenic removal from arsenic-containing pyrite cinder using acid leaching method and the behavior of arsenic fixation by conventional iron salt precipitation, the arsenic containing in the cinder was removed by acid leaching at room temperature and atmospheric pressure, and the arsenic in leaching solution was removed by iron salt precipitation, then the leaching toxicity of precipitates was studied. The effects of grinding fineness, acid concentration, solid-liquid ratio and leaching time on arsenic removal efficiency were investigated. The results show that the arsenic content of the pyrite cinder could be reduced to less than 0.2% by controlling leaching parameters. The arsenic in the leaching solution could be removed as precipitates by adjusting the pH and Fe/As molar ratio. The arsenic concentration in the leaching solution could decrease below 0.5 mg·L-1 when the Fe/As ratio was greater than 2 and the pH was between 4 and 6. The results demonstrate that the precipitates mainly exist in an amorphous form, and increasing the Fe/As ratio could improve the stability and reduce the leaching toxicity of the precipitates. The leaching toxicity of the precipitates was reduced to 0.711 mg·L-1 under the condition of Fe/As = 3, pH = 6.04~6.22. Therefore, the safe disposal of arsenic can be realized by acid leaching to remove arsenic from pyrite cinder and then iron salt precipitation.
Key words:pyrite cinder/
pretreatment/
acid leaching for arsenic removal/
arsenic fixation by iron salt.

加载中
[1] CHEN D, GUO H, XU J, et al. Recovery of iron from pyrite cinder containing non-ferrous metals using high-temperature chloridizing-reduction-magnetic separation [J]. Metallurgical and Materials Transactions B, 2017, 48B: 933-942.
[2] 金程, 李登新. 硫酸烧渣中铁的综合利用研究进展[J]. 金属矿山, 2011(10): 162-165.
[3] 叶志平, 何国伟. 硫酸渣资源化及其以废治废技术研究[J]. 华南师范大学学报 (自然科学版), 2010, 42(2): 72-75.
[4] 王全亮. 某硫酸烧渣提纯降杂工艺试验研究[J].有色金属(选矿部分), 2009(5): 21-25.
[5] LIN Z, QVARFORT U. Predicting the mobility of Zn, Fe, Cu, Pb, Cd from roasted sulfide (pyrite) residues: A case study of wastes from the sulfuric acid industry in Sweden [J]. Waste Management, 1997, 16: 671-681.
[6] DING J, HAN P, LV C, et al. Utilization of gold-bearing and iron-rich pyrite cinder via a chlorination-volatilization process [J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(11): 1-10.
[7] AIP I, DEVECI H, YAZICI E Y, et al. Potential use of pyrite cinders as raw material in cement production: Results of industrial scale trial operations [J]. Journal of Hazardous Materials, 2009, 166 (1): 144-149.
[8] YANG C, CHEN Y, PENG P, et al. Trace element transformations and partitioning during the roasting of pyrite ores in the sulfuric acid industry [J]. Journal of Hazardous Materials, 2009, 167: 835-845.
[9] GIUNTI M, BARONI D, BACCI E. Hazard assessment to workers of trace metal content in pyrite cinders [J]. Bulletin of Environmental Contamination and Toxicology, 2004, 72: 352-357.
[10] LONG H, CHUN T, DI Z, et al. Preparation of metallic iron powder from pyrite cinder by carbothermic reduction and magnetic separation [J]. Metals, 2016, 6(4): 88-96.
[11] ZHU D Q, CHUN T J, PAN J, et al. Preparation of oxidised pellets using pyrite cinders as raw material [J]. Ironmaking & Steelmaking, 2013, 40: 430-435.
[12] WANG J, LUO L, KONG H, et al. The arsenic removal from molten steel [J]. High Temperature Materials and Processes, 2011, 30: 171-173.
[13] WANG Y, XIAO L, LIU Y, et al. Alkalic leaching and stabilization of arsenic from pyrite cinders [J]. The Open Waste Management Journal, 2017, 10: 41-50.
[14] 常耀超, 徐晓辉, 王云. 高砷硫酸烧渣脱砷及高温氯化回收金银 [J]. 有色金属(冶炼部分), 2015(6): 46-49.
[15] SHI Z, WANG M, ZHANG G, et al. Leaching and kinetic modeling of pyrite cinder in sulphuric acid [J]. Asian Journal of Chemistry, 2013, 25(1): 105-109.
[16] 张广伟, 徐政, 李岩. 利用含砷硫酸烧渣生产铁精矿的试验研究[J]. 矿业研究与开发, 2013, 33(1): 34-37.
[17] CHOONG T, CHUAH T, ROBIAH Y, et al. Arsenic toxicity, health hazards and removal techniques from water: An overview [J]. Desalination, 2007, 217: 139-166.
[18] 游洋, 闵小波, 彭兵, 等. 碱性高砷渣晶化稳定处理技术研究 [J]. 有色金属科学与工程, 2015, 6(6): 24-28.
[19] 张明琴, 周新涛, 罗中秋, 等. 石灰-铁盐法处理工业含砷废水研究进展 [J]. 硅酸盐通报,2016, 35(8): 2447-2453.
[20] KRAUSE E, ETTEL V. Solubilities and stabilities of ferric arsenate compounds [J]. Hydrometallurgy, 1989, 22(3): 311-337.
[21] FUJITA T, TAGUCHI R, ABUMIYA M, et al.Effect of pH on atmospheric scorodite synthesis by oxidation of ferrous ions: Physical properties and stability of the scorodite [J]. Hydrometallurgy, 2009, 96: 189-198.
[22] DAENZER R, XU L, DOERFELT C, et al. Precipitation behaviour of As(V) during neutralization of acidic Fe(II)-As(V) solutions in batch and continuous modes [J]. Hydrometallurgy, 2014, 146: 40-47.
[23] SINGHANIA S, WANG Q, FILIPPOU D, et al. Acidity, valency and third-ion effects on the precipitation of scorodite from mixed sulfate solutions under atmospheric-pressure conditions [J]. Metallurgical and Materials Transactions B, 2006, 37(2): 189-197.
[24] TWIDWELL L G, MCLOSKEY J W. Removing arsenic from aqueous solution and longterm product storage [J]. JOM, 2011, 63 (8): 94-100.



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:939
HTML全文浏览数:873
PDF下载数:115
施引文献:0
出版历程

刊出日期:2019-01-08




-->








针对含砷硫酸烧渣酸浸液的铁盐沉淀固砷

王永良1,,
肖力1,2,
韩培伟1,
鲁永刚1,
钱鹏1,
叶树峰1
1.中国科学院过程工程研究所,多相复杂系统国家重点实验室,北京 100190
2.中国科学院大学化学与化工学院,北京 100049
基金项目: 中国科学院重点部署项目(ZDRW-ZS-2018-1)
关键词: 硫酸烧渣/
预处理/
酸浸脱砷/
铁盐沉淀固砷
摘要:为考察含砷硫酸烧渣中酸浸脱砷效果和铁盐沉淀固砷行为,采用常温常压酸浸法脱除硫酸烧渣中的砷,并对进入浸出液中的砷以铁盐沉淀的形式脱除,进而对沉淀渣的浸出毒性进行研究。同时,研究了磨矿细度、酸浓度、固液比、浸出时间对硫酸烧渣中砷脱除效率的影响。结果表明,通过控制浸出参数可以将硫酸烧渣中砷的质量分数降低到0.2%以下,通过调节浸出液的pH和Fe/As摩尔比将其中的砷以沉淀的形式脱除。当Fe/As > 2、pH = 4~6时,溶液中砷浓度降到了0.5 mg·L-1以下。沉淀砷渣主要是以非晶态的形式存在,提高铁砷比有利于提高砷渣稳定性,从而降低浸出毒性。在Fe/As = 3、pH = 6.04~6.22的条件下,得到的沉淀渣的浸出毒性为0.711 mg·L-1。因此,通过酸浸脱除硫酸烧渣中的砷,进而采用铁盐沉淀的方法能够实现硫酸烧渣中砷的安全处置。

English Abstract






--> --> --> 参考文献 (24)
相关话题/中国科学院 北京 有色金属 过程 系统