删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

硫酸盐生物还原过程中涉硫组分代谢特性

本站小编 Free考研考试/2021-12-31

姚琪1,
黄建洪1,
杨磊1,
吴熙1,
胡学伟1
1.昆明理工大学环境科学与工程学院,昆明650500
基金项目: 国家自然科学基金资助项目(51368024,51668026)




Characteristic of metabolism for sulfur-containing components during sulfate bioreduction process

YAO Qi1,
HUANG Jianhong1,
YANG Lei1,
WU Xi1,
HU Xuewei1
1.Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China

-->

摘要
HTML全文
(0)(0)
参考文献(33)
相关文章
施引文献
资源附件(0)
访问统计

摘要:通过硫酸盐生化代谢过程中涉硫组分(SO42-、SO32-、H2S、S2-、S2O32-、微生物含硫)等代谢特性模式研究,揭示了代谢过程中的主要限速步骤及过程代谢产物演替规律。SRB还原过程中限速步骤主要为亚硫酸根转化为硫化氢的过程,利用氮气吹脱硫化氢后,反应终点时各涉硫组分占总硫的51.38%,硫离子的量增加了2.09倍,硫酸根的去除率从83.5%提高到91.24%,亚硫酸根浓度呈现出降低的趋势;pH明显上升,并最终达到8.31,而无吹脱硫化氢的反应器最终pH为6.87。反应器中脱硫弧菌为优势菌,硫化氢被吹脱后,微生物在目、科、属水平上优势菌得到提高,硫化氢的存在抑制了优势菌的增殖。
关键词: SO42-/
硫酸盐还原菌/
涉硫组分/
代谢特性

Abstract:The characteristic of metabolism for sulfur-containing components (SO42-, SO32-, H2S, S2-, S2O32- and microbial sulfur) during sulfate bioreduction process was investigated, and rate-limiting step as well as the succession process of metabolites was illustrated. It was shown that the conversion of sulfite to hydrogen sulfide was regarded as the rate-limiting step in the process of sulfate reducing bacteria reduction. The amount of sulfur ion was increased by 2.09 times and the removal efficiency of sulfate radical was increased from 83.5% to 91.24% after blowing hydrogen sulfide by nitrogen, while the concentration of sulfite was decreased. The sulfur-containing components accounted for 51.38% of the total sulfur at the end of the reaction. Furthermore, it was indicated that the pH of the solution was increased significantly and eventually reached to 8.31. In contrast, the corresponding pH of 6.87 in the reactor was obtained without purging hydrogen sulfide. Besides, the results also demonstrated that Desulfovibrio sp was the dominant bacteria in the reactor, and the amount of these dominant bacteria were increased at the level of the order, family and genera after blowing off hydrogen sulfide. The presence of hydrogen sulfide was proved to inhibit the proliferation of the dominant bacteria.
Key words:SO42-/
sulfate reducing bacteria/
sulfur components/
characteristic of metabolism.

加载中
[1] MUYZER G, STAMS A J.The ecology and biotechnology of sulphate-reducing bacteria[J].Nature Reviews Microbiology,2008,6(6):441-454 10.1038/nrmicro1892
[2] SANCHEZ-ANDREA I, SANZ J L, BIJMANS M F, et al.Sulfate reduction at low pH to remediate acid mine drainage[J].Journal of Hazardous Materials,2014,269:98-109 10.1016/j.jhazmat.2013.12.032
[3] 王爱杰, 王丽燕, 任南琪, 等. 硫酸盐废水生物处理工艺研究进展[J]. 哈尔滨工业大学学报,2004,36(11):1446-1449
[4] NECULITA C M, ZAGURY G J, BUSSIERE B.Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: Critical review and research needs[J].Journal of Environmental Quality,2007,36(1):1-16 10.2134/jeq2006.0066
[5] YUE Z B, LI Q, LI C C, et al.Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria[J].Bioresource Technology,2015,194:399-402 10.1016/j.biortech.2015.07.042
[6] LE P P, BATTAGLIA-BRUNET F, PARMENTIER M, et al.Complete removal of arsenic and zinc from a heavily contaminated acid mine drainage via an indigenous SRB consortium[J].Journal of Hazardous Materials,2016,321:764-772 10.1016/j.jhazmat.2016.09.060
[7] HAO T W, XIANG P Y, MACKEY H R, et al.A review of biological sulfate conversions in wastewater treatment[J].Water Research,2014,65:1-21 10.1016/j.watres.2014.06.043
[8] 倪师军, 李珊, 李泽琴, 等. 矿山酸性废水的环境影响及防治研究进展[J]. 地球科学进展,2008,23(5):501-508
[9] SOROKIN Y I.Role of carbon dioxide and acetate in biosynthesis by sulphate-reducing bacteria[J].Nature,1966,210(5035):551-552 10.1038/210551a0
[10] 肖利萍, 汪兵兵, 魏芳, 等. 新型碳源驯化的SRB 去除酸性矿山废水中SO42- 最佳反应条件[J]. 环境工程学报,2014,8(5):1705-1710
[11] LEE D J, LIU X, WENG H L.Sulfate and organic carbon removal by microbial fuel cell with sulfate-reducing bacteria and sulfide-oxidising bacteria anodic biofilm[J].Bioresource Technology,2014,156(4):14-19 10.1016/j.biortech.2013.12.129
[12] MEYER D D, DE ANDRADE P A, DURRER A, et al.Bacterial communities involved in sulfur transformations in wastewater treatment plants[J].Applied Microbiology & Biotechnology,2016,100(23):10125-10135 10.1007/s00253-016-7839-3
[13] LEFVRE C T, MENGUY N, ABREU F, et al.A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria[J].Science,2011,334(6063):1720-1723 10.1126/science.1212596
[14] COLIN Y, GONI-URRIZA M, CAUMETTE P, et al.Combination of high throughput cultivation and dsrA sequencing for assessment of sulfate-reducing bacteria diversity in sediments[J].FEMS Microbiology Ecology,2013,83(1):26-37 10.1111/j.1574-6941.2012.01452.x
[15] ORSI W D, J RGENSEN B B, BIDDLE J F.Transcriptional analysis of sulfate reducing and chemolithoautotrophic sulfur oxidizing bacteria in the deep subseafloor[J].Environmental Microbiology Reports,2016,8(4):452-460 10.1111/1758-2229.12387
[16] XIANG Y, LIU G, ZHANG R, et al.Acetate production and electron utilization facilitated by sulfate-reducing bacteria in a microbial electrosynthesis system[J].Bioresource Technology,2017,241:821-829 10.1016/j.biortech.2017.06.017
[17] BAI H, KANG Y, QUAN H, et al.Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs[J].Bioresource Technology,2013,128(1):818-822 10.1016/j.biortech.2012.10.070
[18] XU D, LI Y, GU T.Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria[J].Bioelectrochemistry,2016,110:52-58 10.1016/j.bioelechem.2016.03.003
[19] VASQUEZ Y, ESCOBAR M C, NECULITA C M, et al.Biochemical passive reactors for treatment of acid mine drainage: Effect of hydraulic retention time on changes in efficiency, composition of reactive mixture, and microbial activity[J].Chemosphere,2016,153:244-253 10.1016/j.chemosphere.2016.03.052
[20] 苏冰琴, 李亚新.EGSB 反应器中硫酸盐还原与重金属去除[J]. 中国矿业大学学报,2008,37(2):246-249
[21] MARTINS M, SANTOS E S, PIRES C, et al.Production of irrigation water from bioremediation of acid mine drainage: Comparing the performance of two representative systems[J].Journal of Cleaner Production,2010,18(3):248-253 10.1016/j.jclepro.2009.10.013
[22] 苏宇, 王进, 彭书传, 等. 以稻草和污泥为碳源硫酸盐还原菌处理酸性矿山排水[J]. 环境科学,2010,31(8):1858-1863
[23] HU X, HU Y, CHEN K, et al.Treatment of simulation of copper-containing pit wastewater with sulfate-reducing bacteria (SRB) in biofilm reactors[J].Environmental Earth Sciences,2016,75(19):1305 10.1007/s12665-016-6108-1
[24] MADIGAN M T, MARTINKO J M, STAHL D A, et al.Brock Biology of Microorganisms[M].Englwood: Prentice Hall,2000
[25] 任南琪, 王爱杰, 赵阳国. 废水厌氧处理硫酸盐还原菌生态学[M]. 北京: 科学出版社,2009
[26] 刘广民, 任南琪, 杜大仲, 等. 基于底物利用水平的产酸脱硫系统生态特征[J]. 哈尔滨工业大学学报,2004,36(1):20-23
[27] 马前, 张小龙. 国内外重金属废水处理新技术的研究进展[J]. 环境工程学报,2007,1(7):10-14
[28] 王辉, 戴友芝, 刘川, 等. 混合硫酸盐还原菌代谢过程的影响因素[J]. 环境工程学报,2012,6(6):1795-1800
[29] 朱永艳, 郑传波, 李言涛, 等. 海泥中硫酸盐还原菌数量变化对主要腐蚀环境因子的影响[J]. 海洋科学,2006,30(11):37-40
[30] 房琳. 砂岩型铀矿不同矿带中可培养硫酸盐还原菌类群及其分布[D]. 西安: 西北大学,2012
[31] 李甜甜. 污水、海洋环境厌氧微生物的分离与YJ1 菌株的初步研究[D]. 杭州: 浙江大学,2013
[32] 赵燕, 薛林贵, 李琳, 等. 丛毛单胞菌在环境污染物降解方面的研究进展[J]. 微生物学通报,2012,39(10):1471-1478
[33] 李浪, 李潮舟, 屈建航, 等. 一株高效脱硫菌的筛选及性能研究[J]. 环境科学与技术,2012,35(s2):70-73



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:1021
HTML全文浏览数:887
PDF下载数:126
施引文献:0
出版历程

刊出日期:2018-10-11




-->








硫酸盐生物还原过程中涉硫组分代谢特性

姚琪1,
黄建洪1,
杨磊1,
吴熙1,
胡学伟1
1.昆明理工大学环境科学与工程学院,昆明650500
基金项目: 国家自然科学基金资助项目(51368024,51668026)
关键词: SO42-/
硫酸盐还原菌/
涉硫组分/
代谢特性
摘要:通过硫酸盐生化代谢过程中涉硫组分(SO42-、SO32-、H2S、S2-、S2O32-、微生物含硫)等代谢特性模式研究,揭示了代谢过程中的主要限速步骤及过程代谢产物演替规律。SRB还原过程中限速步骤主要为亚硫酸根转化为硫化氢的过程,利用氮气吹脱硫化氢后,反应终点时各涉硫组分占总硫的51.38%,硫离子的量增加了2.09倍,硫酸根的去除率从83.5%提高到91.24%,亚硫酸根浓度呈现出降低的趋势;pH明显上升,并最终达到8.31,而无吹脱硫化氢的反应器最终pH为6.87。反应器中脱硫弧菌为优势菌,硫化氢被吹脱后,微生物在目、科、属水平上优势菌得到提高,硫化氢的存在抑制了优势菌的增殖。

English Abstract






--> --> --> 参考文献 (33)
相关话题/微生物 过程 环境科学 矿山 环境工程