陈帆1,
程浩1,
姚晓婧1,
王爱杰1
1.哈尔滨工业大学城市水资源与水环境国家重点实验室,哈尔滨 150090
基金项目: 国家****科学基金资助项目(51225802)
Woodchip-sulfur packed denitrification biofilter for enhanced nitrate removal
DONG Quanyu1,,CHEN Fan1,
CHENG Hao1,
YAO Xiaojing1,
WANG Aijie1
1.State Key Laboratory of Urban Water Resources and Water Environment, Harbin Institute of Technology, Harbin 150090, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:针对污水处理厂二级出水深度脱氮的需求,设计了以木屑与硫磺颗粒为填料(质量比1:1)的反硝化生物滤池,对碳氮比失衡的污水处理厂二级出水进行深度脱氮处理。结果表明,木屑释放碳源速率在10 d之后趋于稳定,COD中(40.6±10.0)%是反硝化菌可直接利用的VFA。反硝化生物滤池运行的最佳HRT为10 h,在此条件下,进水硝酸盐(以N计)浓度为30 mg·L-1时,出水硝酸盐浓度最低为11.5 mg·L-1,亚硝酸盐(以N计)浓度最低为1.4 mg·L-1,反硝化生物滤池内未发生硝酸盐异化还原(DNRA)作用,出水无氨氮积累。出水SO42-浓度最高为73.8 mg·L-1。反硝化生物滤池运行稳定后,出水中COD未超过30 mg·L-1,木屑释放的碳源与异养反硝化过程消耗的碳源持平,经反硝化生物滤池深度处理的出水中无过量残留有机物。出水pH稳定在6.9~7.4范围内,反硝化生物滤池无需外加碱类物质。
关键词: 木屑/
硫磺/
反硝化生物滤池/
硝酸盐去除
Abstract:The results indicated the rate of the released carbon from woodchip tended to be stable after 10 d and (40.6±10.0)% of COD was volatile fatty acid, an available carbon source directly utilized by denitrifier. Under the condition of the optimal HRT (10 h) with thenitrate concentration (nitrate nitrogen value) of 30 mg·L-1 in influent, the concentration of nitrate, nitrite (nitrite nitrogen value) and sulfate in the effluent could reach 11.5, 1.4 and 73.8 mg·L-1, respectively. It was worth to mention that the accumulation of ammonia and dissimilatory nitrate reduction to ammonium were not occurred. In addition, no residual organic material was escaped from woodchip to the effluent, verified by the low COD in effluent (-1). The range of pH in effluent maintained at 6.9 to 7.4 and there no additional alkaline compounds was required.
Key words:woodchip/
sulfur/
denitrifying biofilter/
nitrate removal.
[1] | RYTHER J H, DUNSTAN W M.Nitrogen, phosphorus, and eutrophication in the coastal marine environment[J].Science,1971,171(3975):1008-1013 |
[2] | 卫生部. 生活饮用水卫生标准[J]. 经济管理文摘,2006(11):36-38 |
[3] | BATCHELOR B, LAWRENCE A W.A kinetic model for autotrophic denitrification using elemental sulfur[J].Water Research,1978,12(12):1075-1084 10.1016/0043-1354(78)90053-2 |
[4] | ISAKA K, SUWA Y, KIMURA Y, et al.Anaerobic ammonium oxidation (anammox) irreversibly inhibited by methanol[J].Applied Microbiology & Biotechnology,2008,81(2):379-385 10.1007/s00253-008-1739-0 |
[5] | 袁莹, 周伟丽, 王晖,等. 不同电子供体的硫自养反硝化脱氮实验研究[J]. 环境科学,2013,34(5):1835-1844 |
[6] | ZHOU W, SUN Y, WU B, et al.Autotrophic denitrification for nitrate and nitrite removal using sulfur-limestone[J].Journal of Environmental Sciences,2011,23(11):1761-1769 10.1016/S1001-0742(10)60635-3 |
[7] | SAHINKAYA E, DURSUN N, KILIC A, et al.Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: Control of sulfate production[J].Water Research,2011,45(20):6661-6667 10.1016/j.watres.2011.09.056 |
[8] | SCHMIDTC A, CLARK M W.Efficacy of a denitrification wall to treat continuously high nitrate loads[J].Ecological Engineering,2012,42(3):203-211 10.1016/j.ecoleng.2012.02.006 |
[9] | ROBERTSON W D, SCHIPPER L A, GOLD A J, et al.Nitrate removal rates in woodchip media of varying age[J].Ecological Engineering,2010,36(11):1581-1587 10.1016/j.ecoleng.2010.01.008 |
[10] | 陈帆. 高流速下反硝化脱硫工艺负荷优化及单质硫回收研究[D]. 哈尔滨: 哈尔滨工业大学,2016 |
[11] | 孙雅丽, 张国臣, 阎中,等. 以腐朽木为碳源去除废水中硝酸盐氮的研究[J]. 环境科学,2010,31(6):1494-1498 |
[12] | 袁敏, 周琪, 杨殿海,等. 乙酸钠为碳源时缺氧生物滤池深度脱氮研究[J]. 水处理技术, 2008,34(6):23-25 |
[13] | 周彦卿, 郝瑞霞, 刘思远,等. 新型硫铁复合填料强化再生水深度脱氮除磷[J]. 环境科学, 2017,38(10):4309-4315 10.13227/j.hjkx.201703241 |
[14] | 李乐乐, 张卫民, 何江涛,等. 玉米秸秆碳源释放特征及反硝化效果[J]. 环境工程学报,2015, 9(1):113-118 |
[15] | 钟胜强, 杨扬, 陶然,等. 5种植物材料的水解释碳性能及反硝化效率[J]. 环境工程学报,2014,8(5):1817-1824 |
[16] | LEWANDOWSKI Z, LEWANDOWSKI Z.Biological denitrification in the presence of cyanide[J].Water Research,1984,18(3):289-297 10.1016/0043-1354(84)90102-7 |
[17] | ELEFSINIOTIS P, WAREHAM D G, SMITH M O.Use of volatile fatty acids from an acid-phase digester for denitrification.[J].Journal of Biotechnology,2004,114(3):289-297 10.1016/j.jbiotec.2004.02.016 |
[18] | CONSTANTIN H, FICK M.Influence of C-sources on the denitrification rate of a high-nitrate concentrated industrial wastewater[J].Water Research,1997,31(3):583-589 10.1016/S0043-1354(96)00268-0 |
[19] | 徐亚同. 不同碳源对生物反硝化的影响[J]. 环境科学,1994,15(2):29-32 |
[20] | 王淑莹, 孙洪伟, 杨庆,等. 传统生物脱氮反硝化过程的生化机理及动力学[J]. 应用与环境生物学报,2008,14(5):732-736 |
[21] | 刘玲花, 王占生, 王志石. 硫/石灰石滤柱去除地下水中硝酸盐的研究[J]. 环境工程,1995,13(3):11-16 |
[22] | CHUNG J, AMIN K, KIM S, et al.Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor[J].Water Research,2014,58(3):169-178 10.1016/j.watres.2014.03.071 |
[23] | 杨莎莎, 宋英豪, 赵宗升,等.pH值和碳氮比对亚硝酸型反硝化影响的研究[J]. 环境工程学报,2007,1(12):15-19 |
[24] | 熊剑锋, 徐华, 阎宁,等. 梧桐树叶作为反硝化碳源的研究[J]. 环境科学,2012,33(11):4057-4061 |
[25] | OH S E, YOO Y B, YOUNG J C, et al.Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions[J].Journal of Biotechnology,2001,92(1):1-8 10.1016/S0168-1656(01)00344-3 |
[26] | KOENIG A, LIU L H.Kinetic model of autotrophic denitrification in sulphur packed-bed reactors[J].Water Research,2001,35(8):1969-1978 10.1016/S0043-1354(00)00483-8 |
[27] | BO B J, JORGENSEN B B.Mineralisation of organic matter in the sea bed: The role of sulphate reduction[J].Nature,1982,296(5858):643-645 10.1038/296643a0 |
[28] | MATIN A.Organic nutrition of chemolithotrophic bacteria[J].Annual Review of Microbiology,2003,32(32):433-468 10.1146/annurev.mi.32.100178.002245 |
[29] | LI R, FENG C, HU W, et al.Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation.[J].Water Research,2016,89:171-179 10.1016/j.watres.2015.11.044 |
[30] | 周少奇, 张鸿郭. 垃圾渗滤液厌氧氨氧化与反硝化的协同作用[J]. 华南理工大学学报(自然科学版),2008,36(3):73-76 |
[31] | MULDER A, GRAAF A A V D, ROBERTSON L A, et al.Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J].FEMS Microbiology Ecology,1995,16(3):177-184 10.1016/0168-6496(94)00081-7 |
Turn off MathJax -->
点击查看大图
计量
文章访问数:921
HTML全文浏览数:775
PDF下载数:182
施引文献:0
出版历程
刊出日期:2018-10-11
-->
木屑-硫磺填充床反硝化生物滤池强化硝酸盐去除
董全宇1,,陈帆1,
程浩1,
姚晓婧1,
王爱杰1
1.哈尔滨工业大学城市水资源与水环境国家重点实验室,哈尔滨 150090
基金项目: 国家****科学基金资助项目(51225802)
关键词: 木屑/
硫磺/
反硝化生物滤池/
硝酸盐去除
摘要:针对污水处理厂二级出水深度脱氮的需求,设计了以木屑与硫磺颗粒为填料(质量比1:1)的反硝化生物滤池,对碳氮比失衡的污水处理厂二级出水进行深度脱氮处理。结果表明,木屑释放碳源速率在10 d之后趋于稳定,COD中(40.6±10.0)%是反硝化菌可直接利用的VFA。反硝化生物滤池运行的最佳HRT为10 h,在此条件下,进水硝酸盐(以N计)浓度为30 mg·L-1时,出水硝酸盐浓度最低为11.5 mg·L-1,亚硝酸盐(以N计)浓度最低为1.4 mg·L-1,反硝化生物滤池内未发生硝酸盐异化还原(DNRA)作用,出水无氨氮积累。出水SO42-浓度最高为73.8 mg·L-1。反硝化生物滤池运行稳定后,出水中COD未超过30 mg·L-1,木屑释放的碳源与异养反硝化过程消耗的碳源持平,经反硝化生物滤池深度处理的出水中无过量残留有机物。出水pH稳定在6.9~7.4范围内,反硝化生物滤池无需外加碱类物质。
English Abstract
Woodchip-sulfur packed denitrification biofilter for enhanced nitrate removal
DONG Quanyu1,,CHEN Fan1,
CHENG Hao1,
YAO Xiaojing1,
WANG Aijie1
1.State Key Laboratory of Urban Water Resources and Water Environment, Harbin Institute of Technology, Harbin 150090, China
Keywords: woodchip/
sulfur/
denitrifying biofilter/
nitrate removal
Abstract:The results indicated the rate of the released carbon from woodchip tended to be stable after 10 d and (40.6±10.0)% of COD was volatile fatty acid, an available carbon source directly utilized by denitrifier. Under the condition of the optimal HRT (10 h) with thenitrate concentration (nitrate nitrogen value) of 30 mg·L-1 in influent, the concentration of nitrate, nitrite (nitrite nitrogen value) and sulfate in the effluent could reach 11.5, 1.4 and 73.8 mg·L-1, respectively. It was worth to mention that the accumulation of ammonia and dissimilatory nitrate reduction to ammonium were not occurred. In addition, no residual organic material was escaped from woodchip to the effluent, verified by the low COD in effluent (-1). The range of pH in effluent maintained at 6.9 to 7.4 and there no additional alkaline compounds was required.