删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

碳源和COD/N对短程反硝化处理垃圾焚烧渗沥液产N2O的影响与调控

本站小编 Free考研考试/2021-12-31

林子雨1,,
党岩1,
刘钊1,
孙德智1
1.北京林业大学环境科学与工程学院,水体污染源控制技术北京市重点实验室,污染水体源控与生态修复技术北京市高等学校工程研究中心,北京 100083



Effects of carbon source and COD/N on nitrous oxide production during treatment of leachate from MSW incineration plant by short cut denitrification and its regulation

LIN Ziyu1,,
DANG Yan1,
LIU Zhao1,
SUN Dezhi1
1.Engineering Research Center for Water Pollution Source Control and Eco-Remediation, Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China

-->

摘要
HTML全文
(0)(0)
参考文献(20)
相关文章
施引文献
资源附件(0)
访问统计

摘要:采用短程硝化反硝化工艺处理垃圾焚烧渗沥液厌氧出水,研究反硝化过程中碳源种类(乙酸钠、甲醇、葡萄糖)和碳氮比(1.5、2.5、3.5、5.0)对N2O产生的影响,以实现N2O的高效产生。结果表明,反硝化系统中N2O的产生受外加碳源种类和碳氮比影响较大。在反硝化所需碳氮比(COD/N=5.0)条件下,高效产N2O的碳源种类为乙酸钠,N2O转化率为6.9%。以乙酸钠为碳源,在碳氮比为3.5时N2O产量最大,N2O转化率可达15%。通过最佳产N2O条件下微生物群落分析发现,一些有助于N2O产生的反硝化菌得到富集。因此,通过碳源和COD/N等参数的调控,能够实现垃圾焚烧渗沥液反硝化段N2O的高效产生。
关键词: N2O/
碳源/
碳氮比/
反硝化

Abstract:A short-cut nitrification and denitrification system was used to treat anaerobically-treated leachate from a municipal solid waste (MSW) incineration plant. The effects of carbon source (acetate, methanol and glucose) and COD/N (1.5, 2.5, 3.5 and 5) on nitrous oxide production were investigated in this study to achieve high production efficiency of nitrous oxide. The results showed that carbon source and COD/N significantly affected the production of nitrous oxide.Higher nitrous oxide production rate was achieved when the reactor was fed leachate with acetate as the carbon source compared with the other two carbon sources, with a nitrous oxide conversion efficiency of 6.9%. Taking acetate as the carbon source and adjusting COD/N to 3.5, a highest nitrous oxide conversion efficiency was achieved as high as 15%. According to the microbial community analysis under the optimal conditions, the proportions of some genus with nitrous oxide as the terminal denitrification product were significantly increased. Therefore, the high production efficiency of nitrous oxide could be achieved during the denitrification treatment of the leachate from MSW incineration plant by regulating the carbon source and COD/N.
Key words:nitrous oxide/
carbon source/
COD/N/
denitrification.

加载中
[1] SCHERSON Y D, WELLS G F, WOO S, et al.Nitrogen removal with energy recovery through N2O decomposition[J].Energy & Environmental Science,2013,6(1):241-248 10.1039/C2EE22487A
[2] SCHERSON Y D, ROA A, DARLING G, et al.Sidestream treatment with energy recovery from nitrogen waste: The coupled aerobic-anoxic nitrous decomposition operation (CANDO)[J].Proceedings of the Water Environment Federation,2014,9:1114-1125 10.2175/193864714815941298
[3] CHUNG C Y, CHUNG M S.BNP test to evaluate the influence of C/N ratio on N2O production in biological denitrification[J].Water Science and Technology,2000,42(3):23-27
[4] CHEN Y, WEN Y, CHENG J, et al.Effects of dissolved oxygen on extracellular enzymes activities and transformation of carbon sources from plant biomass: Implications for denitrification in constructed wetlands[J].Bioresource Technology,2011,102(3):2433-2440 10.1016/j.biortech.2010.10.122
[5] VAN R J, TAL Y, BARAK Y.Influence of volatile fatty acids on nitrite accumulation by a Pseudomonas stutzeri strain isolated from a denitrifying fluidized bed reactor[J].Applied and Environmental Microbiology,1996,62(7):2615-2620
[6] WU G X, ZHAI X, JIANG C, et al.Effect of ammonium on nitrous oxide emission during denitrification with different electron donors[J].Journal of Environmental Sciences,2013,25(6):1131-1138 10.1016/S1001-0742(12)60164-8
[7] KISHIDA N, KIM J H, KIMOCHI Y, et al.Effect of COD/N ratio on nitrous oxide emission from swine wastewater treatment process[J].Water Science and Technology,2004,49(5):359-371 10.2166/wst.2004.0775
[8] ITOKAWA H, HANAKI K, MATSUO T.Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition[J].Water Research,2001,35(3):657-664 10.1016/S0043-1354(00)00309-2
[9] ITOKAWA H, HANAKI K, MATSUO T.Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition[J].Water Research,2001,35(3):657-664 10.1016/0043-1354(95)00204-9
[10] FU Z, YANG F, ZHOU F, et al.Control of COD/N ratio for nutrient removal in a modified membrane bioreactor (MBR) treating high strength wastewater[J].Bioresource Technology,2008,100(1):136-141 10.1016/j.biortech.2008.06.006
[11] 贾文林.同步硝化反硝化过程中N2O释放特征及其机理研究[D].济南:山东大学,2013
[12] ESCHBACH M, SCHREIBER K, TRUNK K, et al.Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation[J].Journal of Bacteriology,2004,186(14):4596-4604
[13] THIRD K A, BURNETT N, CORD-RUWISCH R.Simultaneous nitrification and denitrification using stored substrate (PHB) as the electron donor in an SBR[J].Biotechnology and Bioengineering,2003,83(6):706-720 10.1002/bit.10708
[14] JONES C M, STRES B, ROSENQUIST M, et al.Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification[J].Molecular Biology and Evolution, 2008, 25(9): 1955-1966
[15] ZHAO W, WANG Y, LIU S, et al.Denitrification activities and N2O production under salt stress with varying COD/N ratios and terminal electron acceptors[J].Chemical Engineering Journal, 2013, 215-216(3): 252-260
[16] AHN J H, KWAN T, CHANDRAN K.Comparison of partial and full nitrification processes applied for treating high-strength nitrogen wastewaters: Microbial ecology through nitrous oxide production[J].Environmental Science & Technology,2011,45(7):2734-2740 10.1021/es103534g
[17] FOLEY J, DE HASS D, YUAN Z, et al.Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants[J].Water Research,2009,44(3):831-843 10.1016/j.watres.2009.10.033
[18] MANEFIELD M, WHITELEY A S, GRIFFITHS R I, et al.RNA Stable isotope probing, a novel means of linking microbial community function to phylogeny[J].Applied and Environmental Microbiology,2002,68(11):5367-5373
[19] PHILIPPOT L, MIRLEAU P, MAZURIER S, et al.Characterization and transcriptional analysis of Pseudomonas fluorescens denitrifying clusters containing the nar, nir, nor and nos genes[J].Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression,2001,1517(3):436-440 10.1016/S0167-4781(00)00286-4
[20] SPRING S, JACKEL U, WAGNER M, et al.Ottowia thiooxydans gen.nov., sp.nov., a novel facultatively anaerobic, N2O-producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Hylemonella gracilis gen.nov., comb.nov[J].International Journal of Systematic and Evolutionary Microbiology,2004,54(1):99-106 10.1099/ijs.0.02727-0



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:1212
HTML全文浏览数:972
PDF下载数:152
施引文献:0
出版历程

刊出日期:2018-08-17




-->








碳源和COD/N对短程反硝化处理垃圾焚烧渗沥液产N2O的影响与调控

林子雨1,,
党岩1,
刘钊1,
孙德智1
1.北京林业大学环境科学与工程学院,水体污染源控制技术北京市重点实验室,污染水体源控与生态修复技术北京市高等学校工程研究中心,北京 100083
基金项目:
关键词: N2O/
碳源/
碳氮比/
反硝化
摘要:采用短程硝化反硝化工艺处理垃圾焚烧渗沥液厌氧出水,研究反硝化过程中碳源种类(乙酸钠、甲醇、葡萄糖)和碳氮比(1.5、2.5、3.5、5.0)对N2O产生的影响,以实现N2O的高效产生。结果表明,反硝化系统中N2O的产生受外加碳源种类和碳氮比影响较大。在反硝化所需碳氮比(COD/N=5.0)条件下,高效产N2O的碳源种类为乙酸钠,N2O转化率为6.9%。以乙酸钠为碳源,在碳氮比为3.5时N2O产量最大,N2O转化率可达15%。通过最佳产N2O条件下微生物群落分析发现,一些有助于N2O产生的反硝化菌得到富集。因此,通过碳源和COD/N等参数的调控,能够实现垃圾焚烧渗沥液反硝化段N2O的高效产生。

English Abstract






--> --> --> 参考文献 (20)
相关话题/技术 工艺 系统 北京 微生物