吴晓琴1,
汪定奇1
1.武汉科技大学化学与化工学院,煤转化与新型碳材料湖北省重点实验室,武汉 430081
基金项目: 国家高技术研究发展计划(863)项目(2012AA062501)
Regeneration process of complexing iron denitration agent synergized with iron oxalate photocatalysis
YE Zhi1,,WU Xiaoqin1,
WANG Dingqi1
1.Hubei Coal Conversion and New Carbon Materials Key Laboratory, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081,China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:基于Fe2(C2O4)3的光化学性质,研究了Fe2(C2O4)3光催化协同络合铁脱硝剂再生的实验过程。实验考察了在50 ℃和Fe(II)EDTA浓度为0.01 mol·L-1以及NO进口浓度为530 mg·m-3的模拟烟气脱硝系统中,光催化再生模式、初始pH、Fe2(C2O4)3浓度及组成、氧气浓度对再生过程的影响。结果表明:Fe2(C2O4)3分开加入和分步光照是适合于本体系的反应方式;草酸钠与硫酸亚铁的最佳浓度比为3,浓度分别为0.06 和0.02 mol·L-1,吸收液初始pH为5.3,有氧参与条件下,实现了络合剂有效再生,再生吸收液脱硝率最高可恢复到60%左右;氧在再生过程中表现出正协同效应。通过牺牲光敏性的草酸铁配体再生脱硝络合剂,建立了一种温和的光助低温湿式氨法同步脱硫脱硝过程。
关键词: Fe2(C2O4)3/
光催化/
再生/
NO/
自由基
Abstract:This paper researched into regeneration of denification agent aided by photocatalysis of Fe2(C2O4)3 based on the photochemical properties of Fe2(C2O4)3 . The investigated factors were the mode of illumination, the addition mode of Fe2(C2O4)3, initial pH, Fe2(C2O4)3 concentration, the ratio of Na2C2O4 to FeSO4, and oxygen concentration at 50 ℃ of system temperature and 0.01 mol·L-1 of Fe(II)EDTA concentration and 530 mg·m-3 of the inlet NO concentration. Experimental results indicated that Na2C2O4 and FeSO4 added into NO-riched solution after NO absorption finishing was the adequate mode for this system. The optimum ratio value of Na2C2O4 to FeSO4 was 3 with their concentrations of 0.06 and 0.02 mol·L-1, respectively. Meanwhile, when the initial pH of absorption solution was about 5.3, and oxygen participated in regeneration reaction, the complexing agent got the highest regenerated denification efficiency of 60%. Oxygen played a positive effect on the regeneration process. According to this research, a process of mild photocatalytic-aided wet ammonia desulfurization and denification simultaneously could be established at the expense of Fe2(C2O4)3.
Key words:Fe2(C2O4)3/
photocatalytic/
regeneration/
NO/
radical.

[1] | 中华人民共和国国家统计局. 2016年国民经济和社会发展统计公报[N]. 中国信息报, 2017-03-01(001) |
[2] | XIE J K, QU Z, YAN N Q, et al.Novel regenerable sorbent based on Zr–Mn binary metal oxides for flue gas mercury retention and recovery[J].Journal of Hazardous Materials,2013,261:206-213 10.1016/j.jhazmat.2013.07.027 |
[3] | ZHAO Y, HAN Y H, GUO T X, et al.Simultaneous removal of SO2, NO and Hg0 from flue gas by ferrate(VI) solution[J].Energy,2014,67:652-658 10.1016/j.energy.2014.01.081 |
[4] | ZHAO Y, HAN Y H, CHEN C.Simultaneous removal of SO2 and NO from flue gas using multicomposite active absorbent[J].Industrial and Engineering Chemistry Research,2012,51(1):480-486 |
[5] | FANG P, CEN C P, WANG X M, et al.Simultaneous removal of SO2, NO and Hg0 by wet scrubbing using urea + KMnO4 solution[J].Fuel Processing Technology,2013,106:645-653 10.1016/j.fuproc.2012.09.060 |
[6] | ZHAO Y, HAN Y H, MA T Z, et al.Simultaneous desulfurization and denitrification from flue gas by ferrate(VI) [J].Environmental Science & Technology,2011,45(9):4060-4065 |
[7] | 朱登亮, 张扬, 赵世永, 等. 烟气干法脱硫脱硝协同工艺研究[J]. 煤炭加工与综合利用, 2017(4):45-48 |
[8] | 杨垒. 火电厂脱硝技术与应用以及脱硫脱硝一体化发展趋势[J]. 科技风,2014(18):46-47 |
[9] | 钟少芬, 蔡卓弟. 液相络合法脱除NOx的研究进展[J]. 广东化工,2012,39(2):121-122 |
[10] | 樊响, 殷旭. 烧结烟气脱硫脱硝一体化技术分析[J]. 矿冶,2013,22(S1):168-172 |
[11] | 刘成. 光助Fe(Ⅱ)EDTA-草酸钠复合吸收液脱硫脱硝的实验研究[D]. 武汉:武汉科技大学,2016 |
[12] | 苑鹏, 卢凤菊, 梅雪, 等. 高级氧化法在烟气脱硫脱硝脱汞中的应用研究进展[J]. 化工进展,2016,35(10):3313-3322 |
[13] | SKALSKA K, MILLER J S, LEDAKOWICZ S.Trends in NOx abatement:A review[J].Science of the Total Environment,2010,408(19):3976-3989 10.1016/j.scitotenv.2010.06.001 |
[14] | PAWEL C, PRZEMYSLAW K, PIOTR M, et al.Homogeneous photocatalysis by transition metal complexes in the environment[J].Journal of Molecular Catalysis A:Chemical,2004,224(1):17-33 10.1016/j.molcata.2004.08.043 |
[15] | HAN Y H, ZHANG J J, ZHAO Y.Visible-light-induced photocatalytic oxidation of nitric oxide and sulfur dioxide: Discrete kinetics and mechanism[J].Energy,2016,103:725-734 10.1016/j.energy.2015.12.007 |
[16] | 张婷, 吴少林, 朱振兴.Fe(III)草酸盐络合物的光化学性质及应用[J]. 江西化工,2008 (1):26-29 |
[17] | 谢银德, 陈峰, 何建军, 等.Photo-Fenton反应研究进展[J]. 感光科学与光化学,2000,18(4):357-365 |
[18] | 马双忱, 马京香, 赵毅, 等. 紫外/过氧化氢法同时脱硫脱硝的研究[J]. 热能动力工程,2009,24(6):792-795 |
[19] | 刘杨先, 张军, 盛昌栋, 等.UV/H2O2高级氧化工艺湿法脱除燃煤烟气中NO实验研究[J]. 中国科学,2010,40(11):1353-1359 |
[20] | 丁毓怡, 刘小东, 方文骥.EDTA络合铁法脱硫试验研究总结[J]. 河南化工,1986(1):13-20 |
[21] | 叶小莉, 吴晓琴, 王淑娟. 氨水/Fe(II)EDTA溶液同时脱硫脱硝实验研究[J]. 环境科学学报,2014,34(6):1560-1566 10.13671/j.hjkxxb.2014.0536 |
[22] | 钱婧, 李威, 张银龙, 等.Fenton法/草酸钠-Fenton法降解典型抗癌药5-氟尿嘧啶[J]. 环境化学,2014,33(7):1229-1234 |
[23] | 吴少林, 谢四才, 李明俊.Fe3+草酸盐络合物/H2O2/日光体系对垃圾渗滤液的处理[J]. 环境科学研究,2005,18(3):29-32 |

Turn off MathJax -->

计量
文章访问数:1267
HTML全文浏览数:915
PDF下载数:288
施引文献:0
出版历程
刊出日期:2018-06-18
-->
草酸铁光催化协同络合铁脱硝剂再生过程
叶智1,,吴晓琴1,
汪定奇1
1.武汉科技大学化学与化工学院,煤转化与新型碳材料湖北省重点实验室,武汉 430081
基金项目: 国家高技术研究发展计划(863)项目(2012AA062501)
关键词: Fe2(C2O4)3/
光催化/
再生/
NO/
自由基
摘要:基于Fe2(C2O4)3的光化学性质,研究了Fe2(C2O4)3光催化协同络合铁脱硝剂再生的实验过程。实验考察了在50 ℃和Fe(II)EDTA浓度为0.01 mol·L-1以及NO进口浓度为530 mg·m-3的模拟烟气脱硝系统中,光催化再生模式、初始pH、Fe2(C2O4)3浓度及组成、氧气浓度对再生过程的影响。结果表明:Fe2(C2O4)3分开加入和分步光照是适合于本体系的反应方式;草酸钠与硫酸亚铁的最佳浓度比为3,浓度分别为0.06 和0.02 mol·L-1,吸收液初始pH为5.3,有氧参与条件下,实现了络合剂有效再生,再生吸收液脱硝率最高可恢复到60%左右;氧在再生过程中表现出正协同效应。通过牺牲光敏性的草酸铁配体再生脱硝络合剂,建立了一种温和的光助低温湿式氨法同步脱硫脱硝过程。
English Abstract
Regeneration process of complexing iron denitration agent synergized with iron oxalate photocatalysis
YE Zhi1,,WU Xiaoqin1,
WANG Dingqi1
1.Hubei Coal Conversion and New Carbon Materials Key Laboratory, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081,China
Keywords: Fe2(C2O4)3/
photocatalytic/
regeneration/
NO/
radical
Abstract:This paper researched into regeneration of denification agent aided by photocatalysis of Fe2(C2O4)3 based on the photochemical properties of Fe2(C2O4)3 . The investigated factors were the mode of illumination, the addition mode of Fe2(C2O4)3, initial pH, Fe2(C2O4)3 concentration, the ratio of Na2C2O4 to FeSO4, and oxygen concentration at 50 ℃ of system temperature and 0.01 mol·L-1 of Fe(II)EDTA concentration and 530 mg·m-3 of the inlet NO concentration. Experimental results indicated that Na2C2O4 and FeSO4 added into NO-riched solution after NO absorption finishing was the adequate mode for this system. The optimum ratio value of Na2C2O4 to FeSO4 was 3 with their concentrations of 0.06 and 0.02 mol·L-1, respectively. Meanwhile, when the initial pH of absorption solution was about 5.3, and oxygen participated in regeneration reaction, the complexing agent got the highest regenerated denification efficiency of 60%. Oxygen played a positive effect on the regeneration process. According to this research, a process of mild photocatalytic-aided wet ammonia desulfurization and denification simultaneously could be established at the expense of Fe2(C2O4)3.