程乾坤1,
王新璋2,
陈惠康2,
张红云1,
黄雄飞1,3,
杨晓芳2,
汤叶涛1,3,
石太宏1,3
1.中山大学环境科学与工程学院,广州 510006
2.中电投山西铝业有限公司,原平 034100
3.广东省环境污染控制与修复技术重点实验室,广州 510006
基金项目: 广东省科技开发协作项目(71010623)
Preparation of modified Bayer process red mud granules and stabilization treatment of lead in soil
YANG Huizhu1,,CHENG Qiankun1,
WANG Xinzhang2,
CHEN Huikang2,
ZHANG Hongyun1,
HUANG Xiongfei1,3,
YANG Xiaofang2,
TANG Yetao1,3,
SHI Taihong1,3
1.School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006,China
2.Zhongdian Investment Shanxi Aluminum Co.Ltd., Yuanping 034100, China
3.Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:拜耳法赤泥产量大且成分复杂,碱性强,难处理,易引起环境污染。而近年土壤重金属污染形势严峻,儿童血铅中毒事件时有发生。针对上述问题,以拜耳法赤泥为主要原料,加入少量水泥等添加剂改性制备赤泥基颗粒材料,并将其应用于土壤中铅的稳定化。结果表明,材料配方为2%水泥+5%石膏+5%粉煤灰+5%磷酸二氢钙+83%,水灰比为0.5,圆盘造粒参数为28°﹣1﹣1时为颗粒最佳条件。按此配方制备的赤泥颗粒对铅污染浓度为100、250、500 和 800 mg·kg﹣1的模拟污染土壤进行修复,当投加5%的颗粒,稳定10 d后,土壤中铅的生物可利用态分别降低了72.52%、65.38%、64.73%和40.03%,而残渣态增加了43.4%、35.13%、43.42%和43.97%,有随着污土浓度增加而增加的趋势,表明赤泥制备成颗粒材料后能有效稳定土壤中不同浓度的铅。
关键词: 赤泥/
颗粒/
土壤铅/
稳定化
Abstract:A large amount of Bayer process red mud is produced every years. It is difficult to handle due to its complicate composition and alkalinity, causing environment pollution. Soil heavy metal pollution is grim in recent years, leading to child blood lead poisoning. Regarding the issue above, we prepared red mud granules by using the Bayer process red mud as the main raw material, adding a little cement and other modified additives, followed by the applicationin stabilizing the soil lead. The results indicated that the optimized parameters for the modification are materials of 2% cement + 5% gypsum + 5% fly ash + 5% calcium dihydrogen phosphate + 83% red mud, water cement ratio of 0.5, the disc granulation parameter of 28°﹣1﹣1. The red mud particles prepared according to the optimized parameters are used to repair simulated soil with lead pollution at four different concentration which are 100, 250, 500 and 800 mg·kg﹣1. When dosing 5% red mud particles followed by 10 days’ immobilization, the bioavailability of lead was reduced 72.52%、65.38%、64.73% and 40.03%, while the residual state increased by 43.4%, 35.13%, 43.42% and 43.97%, respectively. The residual state of soil lead has a tendency to increase as the pollution concentration of soil increase, indicating that red mud prepared into a granular material can effectively stabilize the different concentrations of lead in the soil.
Key words:red mud/
granules/
Pb in soil/
stabilization.
[1] | LIN Y, NAIDU R, MING H.Red mud as an amendment for pollutants in solid and liquid phases[J].Geoderma,2011,163(1):1-12 10.1016/j.geoderma.2011.04.002 |
[2] | 刘万超, 张校申, 江文琛, 等. 拜耳法赤泥粒径分级预处理的研究[J]. 环境工程学报,2011,5(4):921-924 |
[3] | 国土资源部土地整治中心. 中国土地整治发展研究报告[M]. 北京:社会科学文献出版社,2014 |
[4] | WANG B, XIE Z, CHEN J, et al.Effects of field application of phosphate fertilizers on the availability and uptake of lead, zinc and cadmium by cabbage (Brassica chinensis L) in a mining tailing contaminated soil[J].Journal of Environmental Sciences,2008,20(9):1109-1117 10.1016/S1001-0742(08)62157-9 |
[5] | BOLAN N, KUNHIKRISHNAN A, THANGARAJAN R, et al.Remediation of heavy metal(loid)s contaminated soils:To mobilize or to immobilize? [J].Journal of Hazardous Materials,2014,266:141-166 10.1016/j.jhazmat.2013.12.018 |
[6] | SANTONA L, CASTALDI P, MELIS P.Evaluation of the interaction mechanisms between red muds and heavy metals[J].Journal of Hazardous Materials,2006,136(2):324-329 10.1016/j.jhazmat.2005.12.022 |
[7] | COLLINS R N, CLARK M W, PAYNE T E.Solid phases responsible for Mn(II), Cr(III), Co(II), Ni, Cu(II) and Zn immobilization by a modified bauxite refinery residue (red mud) at pH 7.5[J].Chemical Engineering Journal,2014,236(2):419-429 10.1016/j.cej.2013.09.101 |
[8] | LOMBIA E, ZHAO F J, ZHANG G, et al.In situ fixation of metals in soils using bauxite residue: Chemical assessment[J].Environmental Pollution,2002,118(3):435-443 10.1016/S0269-7491(01)00294-9 |
[9] | PICHTEL J, KUROIWA K, SAWYERR H T.Distribution of Pb, Cd and Ba in soils and plants of two contaminated sites[J].Environmental Pollution,2000,110(1):171-177 10.1016/S0269-7491(99)00272-9 |
[10] | 郝晓伟, 黄益宗, 崔岩山, 等. 赤泥对污染土壤Pb-Zn化学形态和生物可给性的影响 [J]. 环境工程学报,2010,4(6):1431-1435 |
[11] | GRAY C W, DUNHAM S J, DENNIS P G, et al.Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud[J].Environmental Pollution,2006,142(3):530-539 10.1016/j.envpol.2005.10.017 |
[12] | MCGOWEN S L, BASTA N T, BROWN G O.Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil[J].Journal of Environmental Quality,2001,30(2):493-501 10.2134/jeq2001.302493x |
[13] | BELVISO C, CAVALCANTE F, RAGONE P, et al.Immobilization of Zn and Pb in polluted soil by in situ crystallization zeolites from fly ash[J].Water Air & Soil Pollution,2012,223(8):5357-5364 10.1007/s11270-012-1285-3 |
[14] | RAM L C, SRIVASTAVA N K, JHA S K, et al.Management of lignite fly ash for improving soil fertility and crop productivity[J].Environmental Management,2007,40(3):438-452 10.1007/s00267-006-0126-9 |
[15] | LOPAREVA-POHU A, VEERDIN A, GARCON G, et al.Influence of fly ash aided phytostabilisation of Pb, Cd and Zn highly contaminated soils on Lolium perenne and Trifolium repens metal transfer and physiological stress[J].Environmental Pollution,2011,159(6):1721-1735 10.1016/j.envpol.2011.02.030 |
[16] | HULLEBUSCH E D V, ZANDVOORT M H, LENS P N L.Metal immobilisation by biofilms: Mechanisms and analytical tools[J].Reviews in Environmental Science & Biotechnology,2003,2(1):9-33 10.1023/B:RESB.0000022995.48330.55 |
[17] | ROWELL D L.Chemistry of variable charge soils[J].European Journal of Soil Science,2010,51(3):541-549 |
[18] | BOLLAND M, POSNER A M, QUIRK J P.Zinc adsorption by goethite in the absence and presence of phosphate[J].Soil Research,1977,15 (3):279-286 10.1071/SR9770279 |
[19] | LEDIN M.Accumulation of metals by microorganisms-processes and importance for soil systems[J].Earth-Science Reviews,2000,51 (1/2/3/4):1-31 10.1016/S0012-8252(00)00008-8 |
[20] | DERMATAS D, MENG X.Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils[J].Engineering Geology, 2003,70(3/4):377-394 10.1016/S0013-7952(03)00105-4 |
[21] | CAO X, WAHBI A, MA L, et al.Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid[J].Journal of Hazardous Materials,2009,164(2/3):555-564 10.1016/j.jhazmat.2008.08.034 |
Turn off MathJax -->
点击查看大图
计量
文章访问数:810
HTML全文浏览数:430
PDF下载数:323
施引文献:0
出版历程
刊出日期:2018-04-22
-->
改性拜耳法赤泥颗粒的制备及对土壤铅的稳定化处理
杨慧珠1,,程乾坤1,
王新璋2,
陈惠康2,
张红云1,
黄雄飞1,3,
杨晓芳2,
汤叶涛1,3,
石太宏1,3
1.中山大学环境科学与工程学院,广州 510006
2.中电投山西铝业有限公司,原平 034100
3.广东省环境污染控制与修复技术重点实验室,广州 510006
基金项目: 广东省科技开发协作项目(71010623)
关键词: 赤泥/
颗粒/
土壤铅/
稳定化
摘要:拜耳法赤泥产量大且成分复杂,碱性强,难处理,易引起环境污染。而近年土壤重金属污染形势严峻,儿童血铅中毒事件时有发生。针对上述问题,以拜耳法赤泥为主要原料,加入少量水泥等添加剂改性制备赤泥基颗粒材料,并将其应用于土壤中铅的稳定化。结果表明,材料配方为2%水泥+5%石膏+5%粉煤灰+5%磷酸二氢钙+83%,水灰比为0.5,圆盘造粒参数为28°﹣1﹣1时为颗粒最佳条件。按此配方制备的赤泥颗粒对铅污染浓度为100、250、500 和 800 mg·kg﹣1的模拟污染土壤进行修复,当投加5%的颗粒,稳定10 d后,土壤中铅的生物可利用态分别降低了72.52%、65.38%、64.73%和40.03%,而残渣态增加了43.4%、35.13%、43.42%和43.97%,有随着污土浓度增加而增加的趋势,表明赤泥制备成颗粒材料后能有效稳定土壤中不同浓度的铅。
English Abstract
Preparation of modified Bayer process red mud granules and stabilization treatment of lead in soil
YANG Huizhu1,,CHENG Qiankun1,
WANG Xinzhang2,
CHEN Huikang2,
ZHANG Hongyun1,
HUANG Xiongfei1,3,
YANG Xiaofang2,
TANG Yetao1,3,
SHI Taihong1,3
1.School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006,China
2.Zhongdian Investment Shanxi Aluminum Co.Ltd., Yuanping 034100, China
3.Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
Keywords: red mud/
granules/
Pb in soil/
stabilization
Abstract:A large amount of Bayer process red mud is produced every years. It is difficult to handle due to its complicate composition and alkalinity, causing environment pollution. Soil heavy metal pollution is grim in recent years, leading to child blood lead poisoning. Regarding the issue above, we prepared red mud granules by using the Bayer process red mud as the main raw material, adding a little cement and other modified additives, followed by the applicationin stabilizing the soil lead. The results indicated that the optimized parameters for the modification are materials of 2% cement + 5% gypsum + 5% fly ash + 5% calcium dihydrogen phosphate + 83% red mud, water cement ratio of 0.5, the disc granulation parameter of 28°﹣1﹣1. The red mud particles prepared according to the optimized parameters are used to repair simulated soil with lead pollution at four different concentration which are 100, 250, 500 and 800 mg·kg﹣1. When dosing 5% red mud particles followed by 10 days’ immobilization, the bioavailability of lead was reduced 72.52%、65.38%、64.73% and 40.03%, while the residual state increased by 43.4%, 35.13%, 43.42% and 43.97%, respectively. The residual state of soil lead has a tendency to increase as the pollution concentration of soil increase, indicating that red mud prepared into a granular material can effectively stabilize the different concentrations of lead in the soil.