林顺洪1,2,
李玉1,
柏继松1,2,
李长江1,2,
吕全伟1
1.重庆科技学院机械与动力工程学院,重庆 401331
2.重庆科技学院生活垃圾资源化处理协同创新中心,重庆 401331
基金项目: 重庆市科技研究基地能力提升项目(cstc2014pt-gc20001)
重庆市高校成果转化资助项目(KJZH14108)
重庆科技学院研究生科技创新计划项目(YKJCX1620304)
Synergy effect during co-pyrolysis of oily sludge and corn stalk
MO Liu1,,LIN Shunhong1,2,
LI Yu1,
BAI Jisong1,2,
LI Changjiang1,2,
LYU Quanwei1
1.College of Mechanical and Power Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
2.MSW Comprehensive Utilization Collaborative Innovation Center, Chongqing University of Science and Technology, Chongqing 401331, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:利用热重-傅里叶变换红外分析仪(TG-FTIR)对含油污泥与玉米秸秆共热解特性进行了研究,分析了各温度段的协同效应。TG分析表明,共热解主要呈现3个阶段:挥发分的析出(210~520 ℃)、碳酸盐的分解(600~780 ℃)、长链难分解重质油的热裂解和半焦的气化(900~1 100 ℃),且在不同热解阶段呈现出不同的协同效应。热解动力学分析表明,含油污泥与玉米秸秆共热解后,第1阶段的活化能有所增高,而第2、3阶段的活化能大幅降低。FTIR分析表明,第1、2阶段,共热解与单一物料热解的产物种类基本一致,而在第3阶段,共热解使含油污泥热解产物甲基化合物发生分解和转化。含油污泥与玉米秸秆共热解可促进CO2、CO、CH4和C=O化合物的析出,其中添加玉米秸秆质量分数为10%时,对CO2、CO和CH4析出的促进作用最强,添加30%时则对C=O化合物的析出更为有利。
关键词: 热重红外联用/
含油污泥/
玉米秸秆/
共热解/
气相产物
Abstract:The co-pyrolysis characteristics of oily sludge and corn stalk were investigated by thermogravimetric analysis coupled with Fourier transform infrared spectrometer (TG-FTIR). And the synergistic effects of each temperature section was analyzed. TG results showed that the co-pyrolysis could be divided into three main stages, corresponding to volatiles release (210 to 520 ℃), decomposition of carbonate (600 to 780 ℃), decomposition of heavy oily substance and gasification of chars (900 to 1 100 ℃). And different synergistic effects appeared in different pyrolysis stages. The kinetics analysis showed that the activation energy of the first stage increased, and the activation energy of the second and third stage decreased greatly. FTIR spectroscopy indicated that the co-pyrolysis products were consistent with the products of individual fuels at the first and second stage, but co-pyrolysis lead to decomposition and conversion of methyl compounds at the third stage. Co-pyrolysis could promote the precipitation of CO2, CO, CH4 and C=O compounds. When 10% corn stalk added, the precipitation of CO2, CO and CH4 were promoted to the highest extent, and adding 30% corn stalk was more beneficial to the precipitation of C=O compounds.
Key words:TG-FTIR/
oily sludge/
corn stalk/
co-pyrolysis/
gaseous products.
[1] | BREYER S, MEKHITARIAN L, RIMEZ B, et al.Production of an alternative fuel by the co-pyrolysis of landfill recovered plastic wastes and used lubrication oils[J].Waste Management, 2017, 60: 363-374 10.1016/j.wasman.2016.12.011 |
[2] | HU G, LI J, ZENG G.Recent development in the treatment of oily sludge from petroleum industry: A review[J].Journal of Hazardous Materials, 2013, 261: 470-490 10.1016/j.jhazmat.2013.07.069 |
[3] | 王会, 谢康, 向龙斌. 关于含油污泥处理现状研究[J]. 环境与可持续发展, 2016, 41(5): 122-127 10.3969/j.issn.1673-288X.2016.05.035 |
[4] | ZHOU L, JIANG X, LIU J.Characteristics of oily sludge combustion in circulating fluidized beds[J].Journal of hazardous materials, 2009, 170(1): 175-179 10.1016/j.jhazmat.2009.04.109 |
[5] | 张世萱. 油泥脱盐及其转制废弃物衍生燃料技术研究[D]. 台北:台湾大学, 2011 |
[6] | MOHAMMADI S, MIRGHAFFARI N.A preliminary study of the preparation of porous carbon from oil sludge for water treatment by simple pyrolysis or KOH activation[J].New Carbon Materials, 2015, 30(4): 310-318 10.1016/S1872-5805(15)60192-5 |
[7] | 王立璇. 含油污泥处理技术进展[J]. 当代化工研究, 2016(8): 104-105 |
[8] | Chen J B, Mu L, Cai J C, et al.Pyrolysis and oxy-fuel combustion characteristics and kinetics of petrochemical wastewater sludge using thermogravimetric analysis[J].Bioresource Technology, 2015, 198:115-123 10.1016/j.biortech.2015.09.011 |
[9] | ZHOU X, JIA H, FAN D, et al.The positive effects of biomass materials as additives on dehydration performance and the pyrolysis system of oily sludge[J].Petroleum Science and Technology, 2015, 33(21/22): 1829-1836 10.1080/10916466.2015.1028646 |
[10] | WANG J, ZHANG S, GUO X, et al.Thermal behaviors and kinetics of Pingshuo coal/biomass blends during copyrolysis and cocombustion[J].Energy & Fuels,2012, 26(12): 7120-7126 10.1021/ef301473k |
[11] | 杨小芹, 刘雪景, 刘海雄,等. 白松木屑半焦与褐煤共气化过程中的协同效应[J]. 物理化学学报, 2014,30(10): 1794-1800 10.3866/PKU.WHXB201408222 |
[12] | 李继红, 杨世关, 李晓彤. 互花米草与褐煤共热解特性试验[J]. 农业工程学报, 2014, 30(14): 251-257 10.3969/j.issn.1002-6819.2014.14.032 |
[13] | 岳勇, 刘鹏, 王蓉沙,等. 油田含油污泥与芦苇共热解实验研究[J]. 油气田环境保护, 2012, 22(1): 7-9 10.3969/j.issn.1005-3158.2012.01.003 |
[14] | HU G, LI J, ZHANG X, et al.Investigation of waste biomass co-pyrolysis with petroleum sludge using aresponse surface methodology[J].Journal of Environmental Management, 2017, 192: 234-242 10.1016/j.jenvman.2017.01.069 |
[15] | ZHOU X, JIA H, QU C, et al.Low-temperature co-pyrolysis behaviours and kinetics of oily sludge:Effect of agricultural biomass[J].Environmental Technology, 2017, 38(3): 361-369 10.1080/09593330.2016.1194481 |
[16] | 梁文杰. 重质油化学[M]. 东营: 石油大学出版社, 2000:15-25 |
[17] | 周雄, 李伟, 柏继松, 等.N2/CO2气氛下含油污泥热解特性实验研究[J]. 热力发电, 2016, 45(10): 64-69 10.3969/j.issn.1002-3364.2016.10.064 |
[18] | OUNMAS A, ABOULKAS A, BACAOUI A, et al.Pyrolysis of olive residue and sugar cane bagasse: Non-isothermal thermogravimetric kinetic analysis[J].Bioresource Technology, 2011, 102(24): 11234-11238 10.1016/j.biortech.2011.09.010 |
[19] | 杨肖曦,李晓宇,程刚,等. 含油污泥与煤共热解特性的研究[J]. 西安石油大学学报(自然科学版), 2012,27(5):82-86 10.3969/j.issn.1673-064X.2012.05.018 |
[20] | GORBACHEV V M.On the expedience for practice to search for a more accurate analytical solution of the integral in the Arrhenius equation in non-isothermal kinetics[J].Journal of Thermal Analysis, 1982, 25(2):603-606 10.1007/BF01912986 |
[21] | COATS A W,REDFERN J P.Kinetic parameters from thermogravimetric data[J].Nature, 1964, 201 (4914), 68-69 10.1038/201068a0 |
[22] | MA Z Q, CHEN D C, GU J, et al.Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods[J].Energy Conversion and Management, 2015, 89: 251-259 10.1016/j.enconman.2014.09.074 |
[23] | 马中青,支维剑,叶结旺,等. 基于TGA-FTIR和无模式函数积分法的稻壳热解机理研究[J]. 生物质化学工程,2015,49(3):27-33 10.3969/j.issn.1673-5854.2015.03.006 |
[24] | YANG H, YAN R, CHEN H, et al.Characteristics of hemicellulose, cellulose and lignin pyrolysis[J].Fuel, 2007, 86(12): 1781-1788 10.1016/j.fuel.2006.12.013 |
[25] | KAJITANI S, ZHANG Y, UMEMOTO S, et al.Co-gasification reactivity of coal and woody biomass in high-temperature gasification[J].Energy & Fuels, 2009,24(1): 145-151 10.1021/ef900526h |
[26] | ZHU W, SONG W, LIN W.Catalytic gasification of char from co-pyrolysis of coal and biomass[J].Fuel Processing Technology, 2008, 89(9): 890-896 10.1016/j.fuproc.2008.03.001 |
Turn off MathJax -->
点击查看大图
计量
文章访问数:877
HTML全文浏览数:506
PDF下载数:402
施引文献:0
出版历程
刊出日期:2018-04-22
-->
含油污泥与玉米秸秆共热解协同特性
莫榴1,,林顺洪1,2,
李玉1,
柏继松1,2,
李长江1,2,
吕全伟1
1.重庆科技学院机械与动力工程学院,重庆 401331
2.重庆科技学院生活垃圾资源化处理协同创新中心,重庆 401331
基金项目: 重庆市科技研究基地能力提升项目(cstc2014pt-gc20001) 重庆市高校成果转化资助项目(KJZH14108) 重庆科技学院研究生科技创新计划项目(YKJCX1620304)
关键词: 热重红外联用/
含油污泥/
玉米秸秆/
共热解/
气相产物
摘要:利用热重-傅里叶变换红外分析仪(TG-FTIR)对含油污泥与玉米秸秆共热解特性进行了研究,分析了各温度段的协同效应。TG分析表明,共热解主要呈现3个阶段:挥发分的析出(210~520 ℃)、碳酸盐的分解(600~780 ℃)、长链难分解重质油的热裂解和半焦的气化(900~1 100 ℃),且在不同热解阶段呈现出不同的协同效应。热解动力学分析表明,含油污泥与玉米秸秆共热解后,第1阶段的活化能有所增高,而第2、3阶段的活化能大幅降低。FTIR分析表明,第1、2阶段,共热解与单一物料热解的产物种类基本一致,而在第3阶段,共热解使含油污泥热解产物甲基化合物发生分解和转化。含油污泥与玉米秸秆共热解可促进CO2、CO、CH4和C=O化合物的析出,其中添加玉米秸秆质量分数为10%时,对CO2、CO和CH4析出的促进作用最强,添加30%时则对C=O化合物的析出更为有利。
English Abstract
Synergy effect during co-pyrolysis of oily sludge and corn stalk
MO Liu1,,LIN Shunhong1,2,
LI Yu1,
BAI Jisong1,2,
LI Changjiang1,2,
LYU Quanwei1
1.College of Mechanical and Power Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
2.MSW Comprehensive Utilization Collaborative Innovation Center, Chongqing University of Science and Technology, Chongqing 401331, China
Keywords: TG-FTIR/
oily sludge/
corn stalk/
co-pyrolysis/
gaseous products
Abstract:The co-pyrolysis characteristics of oily sludge and corn stalk were investigated by thermogravimetric analysis coupled with Fourier transform infrared spectrometer (TG-FTIR). And the synergistic effects of each temperature section was analyzed. TG results showed that the co-pyrolysis could be divided into three main stages, corresponding to volatiles release (210 to 520 ℃), decomposition of carbonate (600 to 780 ℃), decomposition of heavy oily substance and gasification of chars (900 to 1 100 ℃). And different synergistic effects appeared in different pyrolysis stages. The kinetics analysis showed that the activation energy of the first stage increased, and the activation energy of the second and third stage decreased greatly. FTIR spectroscopy indicated that the co-pyrolysis products were consistent with the products of individual fuels at the first and second stage, but co-pyrolysis lead to decomposition and conversion of methyl compounds at the third stage. Co-pyrolysis could promote the precipitation of CO2, CO, CH4 and C=O compounds. When 10% corn stalk added, the precipitation of CO2, CO and CH4 were promoted to the highest extent, and adding 30% corn stalk was more beneficial to the precipitation of C=O compounds.