删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

不同电子受体浓度对反硝化除磷的影响及动力学特性

本站小编 Free考研考试/2021-12-31

张淼1,,
袁庆1,
黄棚兰2,
於蒙1,
薛禹1,
何成达1,
彭永臻3
1.扬州大学环境科学与工程学院,扬州225127
2.扬州市洁源排水有限公司,扬州225002
3.北京工业大学国家工程实验室,北京市水质科学与水环境恢复工程重点实验室,北京 100124
基金项目: 江苏省自然科学基金资助项目(BK20170506)
扬州大学本科生科技创新项目
横向项目双污泥反硝化除磷工艺强化脱氮除磷及应用(204032264)




Effect of different electron acceptor concentrations on denitrifying phosphorus removal and dynamic characteristic

ZHANG Miao1,,
YUAN Qing1,
HUANG Penglan2,
YU Meng1,
XUE Yu1,
HE Chengda1,
PENG Yongzhen3
1.College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
2.Yangzhou Jieyuan Drainage Company Limited, Yangzhou 225002, China
3.Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, National Engineering Laboratory, Beijing University of Technology, Beijing 100124, China

-->

摘要
HTML全文
(0)(0)
参考文献(22)
相关文章
施引文献
资源附件(0)
访问统计

摘要:以A2/O-移动床生物膜反应器(MBBR)长期稳定运行的反硝化除磷污泥为研究对象,通过在厌氧段投加乙酸钠、缺氧段投加NO3--N,考察反硝化聚磷菌(DPAOs)在不同电子受体浓度(NO3--N:10、20、30、40、50 mg·L-1)下的脱氮除磷特性以及内碳源转化利用规律。实验结果表明:缺氧段电子受体不足导致吸磷受限,微生物由于处于饥饿状态出现糖原(GLY)降解,增加二次释磷的风险;而电子受体过量会抑制DPAOs的生物活性,降低内碳源的转化利用效率和同步脱氮除磷效果。当NO3--N浓度为30~40 mg·L-1时,NO3--N和PO43--P去除率分别为92.28%~96.37%和99.39%~100%,聚-β-羟基链烷酸脂(poly-β-hydroxyalkanoate,PHAs)利用率为84.6%~86.2%,达到较好的同步脱氮除磷效果且实现了内碳源的高效利用。动力学参数对比结果表明,不同电子受体浓度下比吸磷速率(PUR)和比反硝化速率(DNR)在4.32~8.18 mg·(g·h)-1、1.81~6.08 mg·(g·h)-1(以VSS计)范围内波动,且NO3--N/PO43--P比值可间接反映DPAOs生物活性。
关键词: A2/O-移动床生物膜反应器(A2/O-MBBR)/
电子受体/
反硝化除磷/
内碳源转化/
动力学参数

Abstract:By adding sodium acetate in anaerobic phase and NO3--N in anoxic phase, the denitrification and phosphorus removal characteristics and internal carbon source transformation rules of denitrifying phosphorus accumulating bacteria (DPAOs) were investigated under different electron acceptor concentrations (NO3--N: 10, 20, 30, 40, 50 mg·L-1), where the denitrifying phosphorus removal activated sludge was taken from an anaerobic/anoxic/oxic-moving bed biofilm reactor (A2/O-MBBR) system under long-term steady operation. The results showed that the lack of electron acceptor of anoxic phase led to restriction of phosphorus absorption, and the risk of second phosphorus release increased due to glycogen (GLY) degradation in hunger state. However, the overdose of electron acceptor inhibited DPAOs bioactivity and reduced the conversion and utilization efficiency of internal carbon source which limited the simultaneous phosphorus and nitrogen removals. When the NO3--N concentration changed from 30 to 40 mg·L-1 under the condition of this research, NO3--N and PO43--P removal rates ranged from 92.28% to 96.37% and 99.39% to 100% respectively with PHAs (poly-β-hydroxyalkanoate) utilization rate of 84.6% to 86.2%, which achieved better simultaneous denitrification and phosphorus removals and realized efficient utilization of internal carbon source. The results of dynamic parameters comparison revealed that phosphorus uptake rate (PUR) and denitrification rate (DNR) fluctuated in 4.32 to 8.18 mg·(g·h)-1 (calculated by VSS) and 1.8 to 6.08 mg·(g·h)-1 under different NO3--N concentrations, and the ratio of NO3--N/PO43--P indirectly reflected DPAOs bioactivity.
Key words:anaerobic/anoxic/oxic-moving bed biofilm reactor (A2/O-MBBR)/
electron acceptor/
denitrifying phosphorus removal/
internal carbon source transformation/
dynamic parameter.

加载中
[1] MEINHOLD J,ARNOLD E,ISAACS S.Effect of nitrite on anoxic phosphate uptake in biological phosphorus removal activated sludge[J].Water Research,1999, 33(8):1871-1883 10.1016/S0043-1354(98)00411-4
[2] ZHANG W T, HOU F, PENG Y Z, et al.Optimizing aeration rate in an external nitrification–denitrifying phosphorus removal (ENDPR) system for domestic wastewater treatment[J].Chemical Engineering Journal,2014, 245:342-347 10.1016/j.cej.2014.01.045
[3] PENG Y Z, GE S J.Enhanced nutrient removal in three types of step feeding process from municipal wastewater[J].Bioresource Technology,2011, 102(11):6405-6413 10.1016/j.biortech.2011.03.043
[4] 张淼, 何成达, 王淑莹, 等.A2/O+MBBR系统的快速启动及反硝化除磷特性[J].四川大学学报(工程科学版),2017,49(2):240-247
[5] MERZOUKI M, BERNET N, DELGENES J P, et al.Biological denitrifying phosphorus removal in SBR: Effect of added nitrate concentration and sludge retention time[J].Water Science and Technology,2001, 43(3):191-194
[6] 刘建广, 付昆明, 杨义飞, 等.不同电子受体对反硝化除磷菌缺氧吸磷的影响[J].环境科学,2007, 28(7):1472-1476
[7] 杨文婷,沈耀良.SBR中反硝化聚磷菌的培养驯化研究[J].环境科学与技术,2009, 32(8):6-8
[8] ZHOU S Q, ZHANG X J, FENG L Y.Effect of different types of electron acceptors on the anoxic phosphorus uptake activity of denitrifying phosphorus removing bacteria[J].Bioresource Technology,2010, 101(6):1603-1610 10.1016/j.biortech.2009.09.032
[9] GE S J, PENG Y Z, QIU S, et al.Complete nitrogen removal from municipal wastewater via partial nitrification by appropriately alternating anoxic/aerobic conditions in a continuous plug-flow step feed process[J].Water Research,2014, 55(2):95-105 10.1016/j.watres.2014.01.058
[10] WACHTMEISTER A, KUBA T, LOOSDRECHT M C M V, et al.A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge[J].Water Research,1997, 31(3):471-478 10.1016/S0043-1354(96)00281-3
[11] FRANSONM A H.American Public Health Association American Water Works Association Water Environment Federation[M].Methods, Washington DC: American Public Health Association, 1995
[12] OEHMEN A, KELLER-LEHMANN B, ZENG R J, et al.Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems[J].Journal of Chromatography A,2005, 1070(1/2):131-136 10.1016/j.chroma.2005.02.020
[13] WANG Y Y, PENG Y Z, STEPHENSON T.Effect of influent nutrient ratios and hydraulic retention time (HRT) on simultaneous phosphorus and nitrogen removal in a two-sludge sequencing batch reactor process[J].Bioresource Technology,2009, 100(14):3506-3512 10.1016/j.biortech.2009.02.026
[14] WANG Y Y, GENG J J, REN Z J, et al.Effect of anaerobic reaction time on denitrifying phosphorus removal and N2O production[J].Bioresource Technology,2011, 102(10):5674-5684 10.1016/j.biortech.2011.02.080
[15] ZHOU Y, OEHMEN A, LIM M, et al.The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants[J].Water Research,2011, 45(15):4672-4682 10.1016/j.watres.2011.06.025
[16] JABARI P, MUNZ G, OLESZKIEWICZ J A.Selection of denitrifying phosphorous accumulating organisms in IFAS systems: Comparison of nitrite with nitrate as an electron acceptor[J].Chemosphere,2014, 109:20-27 10.1016/j.chemosphere.2014.03.002
[17] 傅金祥, 王颖, 池福强, 等.电子受体质量浓度对反硝化除磷过程的影响[J].沈阳建筑大学学报(自然科学版),2007, 23(5):806-809 10.3969/j.issn.2095-1922.2007.05.024
[18] BASSIN J P, KLEEREBEZEM R, DEZOTTI M, et al.Simultaneous nitrogen and phosphate removal in aerobic granular sludge reactors operated at different temperatures[J].Water Research,2012, 46(12):3805-3816 10.1016/j.watres.2012.04.015
[19] TEMMINK H, PETERSEN B, ISAACS S, et al.Recovery of biological phosphorus removal after periods of low organic loading[J].Water Science and Technology,1996, 34(1/2):1-8 10.1016/0273-1223(96)00488-X
[20] GE S J, WANG S Y, CAO X, et al.Achievement and maintenance of denitrifying phosphorus removal in step feed nutrient removal process[J].CIESC Journal,2011, 62(9):2615-2622
[21] WONG P Y, CHENG K Y, KAKSONEN A H, et al.A novel post denitrification configuration for phosphorus recovery using polyphosphate accumulating organisms[J].Water Research,2013, 47(17):6488-6495 10.1016/j.watres.2013.08.023
[22] COMA M, PUIG S, BALAGUER M D, et al.The role of nitrate and nitrite in a granular sludge process treating low-strength wastewater[J].Chemical Engineering Journal,2010, 164(1):208-213 10.1016/j.cej.2010.08.063



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:1229
HTML全文浏览数:790
PDF下载数:417
施引文献:0
出版历程

刊出日期:2018-03-22




-->








不同电子受体浓度对反硝化除磷的影响及动力学特性

张淼1,,
袁庆1,
黄棚兰2,
於蒙1,
薛禹1,
何成达1,
彭永臻3
1.扬州大学环境科学与工程学院,扬州225127
2.扬州市洁源排水有限公司,扬州225002
3.北京工业大学国家工程实验室,北京市水质科学与水环境恢复工程重点实验室,北京 100124
基金项目: 江苏省自然科学基金资助项目(BK20170506) 扬州大学本科生科技创新项目 横向项目双污泥反硝化除磷工艺强化脱氮除磷及应用(204032264)
关键词: A2/O-移动床生物膜反应器(A2/O-MBBR)/
电子受体/
反硝化除磷/
内碳源转化/
动力学参数
摘要:以A2/O-移动床生物膜反应器(MBBR)长期稳定运行的反硝化除磷污泥为研究对象,通过在厌氧段投加乙酸钠、缺氧段投加NO3--N,考察反硝化聚磷菌(DPAOs)在不同电子受体浓度(NO3--N:10、20、30、40、50 mg·L-1)下的脱氮除磷特性以及内碳源转化利用规律。实验结果表明:缺氧段电子受体不足导致吸磷受限,微生物由于处于饥饿状态出现糖原(GLY)降解,增加二次释磷的风险;而电子受体过量会抑制DPAOs的生物活性,降低内碳源的转化利用效率和同步脱氮除磷效果。当NO3--N浓度为30~40 mg·L-1时,NO3--N和PO43--P去除率分别为92.28%~96.37%和99.39%~100%,聚-β-羟基链烷酸脂(poly-β-hydroxyalkanoate,PHAs)利用率为84.6%~86.2%,达到较好的同步脱氮除磷效果且实现了内碳源的高效利用。动力学参数对比结果表明,不同电子受体浓度下比吸磷速率(PUR)和比反硝化速率(DNR)在4.32~8.18 mg·(g·h)-1、1.81~6.08 mg·(g·h)-1(以VSS计)范围内波动,且NO3--N/PO43--P比值可间接反映DPAOs生物活性。

English Abstract






--> --> --> 参考文献 (22)
相关话题/电子 生物 工程 扬州大学 环境科学