荣宏伟1,
张朝升1,
方茜1,
储昭瑞1,
骆华勇1,
王然登1
1.广州大学土木工程学院,广州 510006
基金项目: 国家自然科学基金资助项目(51778155)
广东省科技计划项目(2014A020216049)
广东省自然科学基金资助项目(2017A030313310)
广州大学研究生创新研究资助计划(2017GDJC-M44)
Effect of different electrode materials on performance of cathode nitrification coupled to anode denitrification in dual-chamber microbial fuel cell
WANG Jia1,,RONG Hongwei1,
ZHANG Chaosheng1,
FANG Qian1,
CHU Zhaorui1,
LUO Huayong1,
WANG Randeng1
1.School of Civil Engineering, Guangzhou University, Guangzhou 510006,China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:为解决传统MFC反硝化菌在好氧阴极难以富集且脱氮效果差的问题,通过构建石墨MFC和碳刷MFC以阴极硝化耦合阳极反硝化的方式脱氮除碳,并对比分析2种不同电极MFC的性能。结果表明:在相同条件下石墨MFC的最大功率密度为6.71 W·m-3 NC,开路电压为902.13 mV;碳刷MFC的最大功率密度为5.11 W·m-3 NC,开路电压819.04 mV。启动阶段前15 d碳刷MFC的总氮去除率更高,之后石墨MFC的总氮去除率接近100%,碳刷MFC的总氮去除率在95%左右。石墨MFC的COD去除率高达93%,碳刷MFC的COD去除率在83%左右。相比于传统MFC,阴极硝化耦合阳极反硝化MFC不需要调节pH。相比于碳刷电极,石墨电极MFC可以启动和挂膜同时进行,缩短挂膜时间,且产电性能和脱氮除碳效果更好。
关键词: 微生物燃料电池/
阴极硝化/
阳极反硝化/
石墨电极/
脱氮除碳
Abstract:The difficult problem that the enrichment of cathodic denitrifying bacteria in the presence of aeration in traditional MFC was waiting to be solved. Here, constructing the graphite MFC and carbon brush MFC in this way of cathode nitrification coupled to anode denitrification completed the goal of simultaneous carbon and nitrogen removal, and compared the performance of two different electrode. The results showed that the maximum power density was 6.71 W·m-3 NC, and the open circuit voltage was 902.13 mV in graphite MFC.Moreover, the maximum power density was 5.11 W·m-3 NC, and the open circuit voltage was 819.04 mV in carbon brush MFC under the same conditions. The total nitrogen removal rate of carbon brush MFC was higher in the first 15 days under start-up stage, then the total nitrogen removal efficiency was about 100% in graphite MFC and 95% in carbon brush MFC. Graphite MFC was 93% in COD removal rate, and carbon brush MFC was 83% in COD removal rate. Compared with the traditional MFC, the cathode nitrification coupled to anode denitrification MFC do not need to regulate pH. The biofilm growth time can be shortened by enablement and biofilm growth at the same time in graphite electrode MFC, and power generation performance or simultaneous carbon and nitrogen removal were better as compared to the carbon brush electrode MFC.
Key words:microbial fuel cell/
cathode nitrification/
anode denitrification/
graphite electrode/
simultaneous carbon and nitrogen removal.
[1] | 张艺,王芳芳,许春玲.微生物燃料电池在废水处理中的应用进展[J].能源与环境,2011,7(3):78-79 |
[2] | 宋天顺,叶晔捷,徐源,等.用于废水处理及产能的微生物燃料电池研究进展[J].现代化工,2008,8(4):23-28 |
[3] | 贾璐维.双室微生物燃料电池与A/O工艺结合脱氮产电性能实验研究[D].西安:长安大学, 2014 |
[4] | 靳敏, 吴忆宁, 赵欣, 等.单室微生物燃料电池处理含铜模拟废水[J].环境工程学报,2016,0(11):6191-6193 |
[5] | ZHANG T, ZENG Y, CHEN S, et al.Improved performances of E.coli-catalyzed microbial fuel cells with composite graphite/PTFE anodes[J].Electrochemistry Communications,2007,9(3):349-353 |
[6] | VIRDIS B, RABAEY K, YUAN Z G, et al.Microbial fuel cells for simultaneous carbon and nitrogen removal[J].Water Research,2008,2(12):3013-3024 |
[7] | ZHANG F, HE Z.Integrated organic and nitrogen removal with electricity generation in a tubular dual-cathode microbial fuel cell[J].Process Biochemistry,2012,7(12):2146-2151 |
[8] | YAN H, SAITO T, REGAN J M.Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode[J].Water Research,2012,6(7):2215-2224 |
[9] | ZHANG F, HE Z.Simultaneous nitrification and denitrification with electricity generation in dual-cathode microbial fuel cells[J].Journal of Chemical Technology and Biotechnology,2012,7(1):153-159 |
[10] | YU C P, LIANG Z H, DAS A, et al.Nitrogen removal from wastewater using membrane aerated microbial fuel cell techniques.[J].Water Research,2011,5(3):1157-1164 |
[11] | VIRDIS B, READ S T, RABAEY K, et al.Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode[J].Bioresource Technology,2011,2(1):334-341 |
[12] | 布鲁斯·洛根.微生物燃料电池[M].冯玉杰, 王鑫, 译.北京:化学工业出版社, 2009 |
[13] | CLAUWAERT P, RABAEY K, AELTERMAN P, et al.Biological denitrification in microbial fuel cells[J].Environmental Science & Technology,2007,1(9):3354-3360 |
[14] | 于景荣, 衣宝廉, 韩明, 等.Nafion膜厚度对质子交换膜燃料电池性能的影响[J].电源技术,2001,5(6):384-386 |
[15] | 张金娜.三种不同阴极类型微生物燃料电池产电性能研究[D].哈尔滨:哈尔滨工业大学,2009 |
[16] | 国家环境保护局.水和废水监测分析方法[M].3版.北京:中国环境科学出版社,1989 |
[17] | LARMINIE J.A Fuel Cell Systems Explained[M].Wiley,2003:78-82 |
[18] | 谢珊,陈阳,梁鹏,等.好氧生物阴极型微生物燃料电池的同时硝化和产电的研究[J].环境科学,2010,1(7):1601-1606 |
[19] | 黄丽巧,易筱筠,韦朝海,等.阴极硝化耦合阳极反硝化实现微生物燃料电池技术脱氮[J].环境工程学报,2015,9(10):5122-5123 |
Turn off MathJax -->
点击查看大图
计量
文章访问数:1109
HTML全文浏览数:574
PDF下载数:496
施引文献:0
出版历程
刊出日期:2018-02-08
-->
不同电极材料对阴极硝化耦合阳极反硝化微生物燃料电池性能的影响
王佳1,,荣宏伟1,
张朝升1,
方茜1,
储昭瑞1,
骆华勇1,
王然登1
1.广州大学土木工程学院,广州 510006
基金项目: 国家自然科学基金资助项目(51778155) 广东省科技计划项目(2014A020216049) 广东省自然科学基金资助项目(2017A030313310) 广州大学研究生创新研究资助计划(2017GDJC-M44)
关键词: 微生物燃料电池/
阴极硝化/
阳极反硝化/
石墨电极/
脱氮除碳
摘要:为解决传统MFC反硝化菌在好氧阴极难以富集且脱氮效果差的问题,通过构建石墨MFC和碳刷MFC以阴极硝化耦合阳极反硝化的方式脱氮除碳,并对比分析2种不同电极MFC的性能。结果表明:在相同条件下石墨MFC的最大功率密度为6.71 W·m-3 NC,开路电压为902.13 mV;碳刷MFC的最大功率密度为5.11 W·m-3 NC,开路电压819.04 mV。启动阶段前15 d碳刷MFC的总氮去除率更高,之后石墨MFC的总氮去除率接近100%,碳刷MFC的总氮去除率在95%左右。石墨MFC的COD去除率高达93%,碳刷MFC的COD去除率在83%左右。相比于传统MFC,阴极硝化耦合阳极反硝化MFC不需要调节pH。相比于碳刷电极,石墨电极MFC可以启动和挂膜同时进行,缩短挂膜时间,且产电性能和脱氮除碳效果更好。
English Abstract
Effect of different electrode materials on performance of cathode nitrification coupled to anode denitrification in dual-chamber microbial fuel cell
WANG Jia1,,RONG Hongwei1,
ZHANG Chaosheng1,
FANG Qian1,
CHU Zhaorui1,
LUO Huayong1,
WANG Randeng1
1.School of Civil Engineering, Guangzhou University, Guangzhou 510006,China
Keywords: microbial fuel cell/
cathode nitrification/
anode denitrification/
graphite electrode/
simultaneous carbon and nitrogen removal
Abstract:The difficult problem that the enrichment of cathodic denitrifying bacteria in the presence of aeration in traditional MFC was waiting to be solved. Here, constructing the graphite MFC and carbon brush MFC in this way of cathode nitrification coupled to anode denitrification completed the goal of simultaneous carbon and nitrogen removal, and compared the performance of two different electrode. The results showed that the maximum power density was 6.71 W·m-3 NC, and the open circuit voltage was 902.13 mV in graphite MFC.Moreover, the maximum power density was 5.11 W·m-3 NC, and the open circuit voltage was 819.04 mV in carbon brush MFC under the same conditions. The total nitrogen removal rate of carbon brush MFC was higher in the first 15 days under start-up stage, then the total nitrogen removal efficiency was about 100% in graphite MFC and 95% in carbon brush MFC. Graphite MFC was 93% in COD removal rate, and carbon brush MFC was 83% in COD removal rate. Compared with the traditional MFC, the cathode nitrification coupled to anode denitrification MFC do not need to regulate pH. The biofilm growth time can be shortened by enablement and biofilm growth at the same time in graphite electrode MFC, and power generation performance or simultaneous carbon and nitrogen removal were better as compared to the carbon brush electrode MFC.