删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

松嫩平原芦苇湿地退化与修复过程中土壤细菌和甲烷代谢微生物的群落结构

本站小编 Free考研考试/2021-12-31

中文关键词湿地退化修复甲烷代谢微生物细菌群落结构 英文关键词wetlanddegradationrestorationmethanogens and methanotrophsbacterial community structure
作者单位E-mail
王秋颖中国科学院生态环境研究中心环境生物技术重点实验室, 北京 100085
中国科学院大学资源与环境学院, 北京 101408
am.q.ing@qq.com
王娜中国科学院生态环境研究中心环境生物技术重点实验室, 北京 100085
中国科学院大学资源与环境学院, 北京 101408
刘颖中国科学院生态环境研究中心环境生物技术重点实验室, 北京 100085
中国科学技术大学生命科学学院, 合肥 230026
陈功中国地质大学水资源与环境学院, 北京 100083
何辉中国地质大学水资源与环境学院, 北京 100083
高婕中国科学院生态环境研究中心环境生物技术重点实验室, 北京 100085
中国科学院大学资源与环境学院, 北京 101408
jiegao@rcees.ac.cn
庄绪亮中国科学院生态环境研究中心环境生物技术重点实验室, 北京 100085
中国科学院大学资源与环境学院, 北京 101408
庄国强中国科学院生态环境研究中心环境生物技术重点实验室, 北京 100085
中国科学院大学资源与环境学院, 北京 101408
中文摘要 湿地是全球CH4重要的源与汇.受人为活动和气候条件影响,我国湿地退化严重,相关部门近年来已逐步开展湿地生态修复的工作.为研究湿地退化与修复过程中细菌和甲烷代谢微生物群落结构的响应,以松嫩平原芦苇湿地为研究对象,采集原始未退化芦苇湿地土壤、退化的和正在修复的芦苇湿地土壤,采用基于细菌16S rRNA基因、产甲烷菌mcrA基因和甲烷氧化菌pmoA基因的高通量测序技术研究细菌和甲烷代谢微生物的多样性和群落组成.结果表明,芦苇湿地退化导致土壤细菌和产甲烷菌的α多样性降低,甲烷氧化菌的α多样性升高,而细菌和产甲烷菌的α多样性与土壤含水率呈显著正相关关系,含水率越高的湿地土壤产甲烷菌的多样性也越高.原始未退化芦苇湿地土壤中细菌Rhizobiales和产甲烷菌Methanobacteriaceae的相对丰度较高;湿地退化导致根际促生菌Rhizobiales的相对丰度下降,致病菌Burkholderiaceae、耐污染细菌Sphingomonas、抗辐射细菌Rubrobacter以及Type Ⅰ型耐受极端环境的甲烷好氧氧化菌MethylobacterMethylomonasMethylococcus的相对丰度上升;正在修复的芦苇湿地土壤中细菌Bacillus和产甲烷菌Methanosarcinaceae、Methanomicrobiaceae以及Type Ⅱ型甲烷好氧氧化菌Methylocystis的相对丰度较高.因此,不同的芦苇湿地状态可以间接改变土壤性状进而改变湿地甲烷代谢菌群落结构. 英文摘要 Wetlands are an important global source and sink of methane. However, human activities and climatic conditions are causing serious degradation of wetlands in China. In response to this, the relevant departments have progressively carried out wetland restoration projects over the past few years. To investigate the response of microbial communities of bacteria, methanogens, and methanotrophs during degradation and restoration of wetlands, soil samples were collected from undegraded reed wetlands, degraded reed wetlands, and restored reed wetlands in the Songnen Plain. Microbial diversity and community composition were studied by high-throughput sequencing based on the 16S rRNA gene of bacteria, the mcrA gene of methanogens, and the pmoA gene of methanotrophs. The results indicate that the degradation of reed wetlands results in a decrease in bacterial and methanogenic α-diversity and an increase in methanotrophic α-diversity. Bacterial α-diversity and methanogenic α-diversity were both significantly positively correlated with soil water content. At different taxonomic levels, higher relative abundances of Rhizobiales and Methanobacteriaceae were detected in the undegraded wetland soils. Wetland degradation decreased the relative abundance of Rhizobiales but increased that of the pathogenic bacteria Burkholderiaceae and microorganisms resistant to harsh and extreme environments including Sphingomonas, Rubrobacter, Methylobacter, Methylomonas, and Methylococcus. In the restored wetland soils, the relative abundances of Bacillus, Methanosarcinaceae, Methanomicrobiaceae, and the type Ⅱ methanotroph Methylocystis were higher. Therefore, different wetland conditions can indirectly change soil properties and, consequently, change the community structure of methanogens and methanotrophs.

PDF全文下载地址:

https://www.hjkx.ac.cn/hjkx/ch/reader/create_pdf.aspx?file_no=20211043&flag=1&journal_id=hjkx&year_id=2021

相关话题/北京 环境 生物技术 中国科学院 中国科学院大学