删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

北京市2014~2020年PM2.5和O3时空分布与健康效应评估

本站小编 Free考研考试/2021-12-31

中文关键词北京细颗粒物(PM2.5)臭氧(O3)大气污染防治健康风险 英文关键词Beijingfine particulate matter (PM2.5)ozone (O3)air pollution controlhealth impacts
作者单位E-mail
陈菁南京信息工程大学应用气象学院, 南京 210044395791733@qq.com
彭金龙中国科学院生态环境研究中心城市与区域生态国家重点实验室, 北京 100085
徐彦森南京信息工程大学应用气象学院, 南京 210044shuibao_xys@163.com
中文摘要 细颗粒物(PM2.5)和臭氧(O3)是我国的主要大气污染物,严重危害人群健康.北京市自2013年以来大力开展大气污染治理工作,现已取得显著成效.通过分析2014~2020年北京市34个大气环境监测站的PM2.5和O3浓度变化特征并评估大气污染防治的健康效应,对推进大气污染防治具有重要意义.结果表明,2014年北京市PM2.5年均值和4~9月平均O3日最大小时(O3_max)值分别为92.0 μg·m-3和81.9 nmol·mol-1.2014~2020年PM2.5平均每年降低7.5 μg·m-3,但是O3_max持续偏高.在季节尺度,冬季的12月和1月PM2.5浓度最高,夏季的8月浓度最低.相反地,O3_max在每年6月浓度最高.PM2.5浓度日变化规律为,夜间22:00至次日00:00最高,14:00~16:00最低.而O3浓度在07:00最低,随后逐步升高并在午后达到最高.在空间分布上,PM2.5在2014和2019年都呈现南高北低的趋势,O3_max在全市范围内均较高,仅在道路区域偏低.大气污染对人群健康影响的评估结果表明,2014年北京市与PM2.5相关的心血管和呼吸道疾病超额死亡人数分别为1580人和821人,与O3相关的呼吸道疾病超额死亡人数为2180人.2019年与PM2.5相关的超额死亡人数仅为2014年的50%,而与O3相关的超额死亡人数与2014年持平.北京市细颗粒物治理成效显著,但是O3污染问题凸显,O3已经成为危害北京市居民健康的首要大气污染物.未来需要加强PM2.5和O3协同治理. 英文摘要 In China, fine particulate matter (PM2.5) and tropospheric ozone (O3) have become major air pollutants that threaten human health. Since 2013, the government has strengthened air pollution controls in Beijing and achieved significant effects. A spatial-temporal analysis was conducted of the distribution and health impacts of PM2.5 and O3 in Beijing, using data collected from 34 air quality monitoring sites between 2014 and 2020. In 2014, the annual average PM2.5 and seasonal (April to September) average of daily one-hourly maximum O3 concentrations (O3_max) were 92.0 μg·m-3 and 81.9 nmol·mol-1, respectively. From 2014 to 2020, annual average PM2.5 decreased at a rate of 7.5 μg·m-3. However, there was no significant difference in O3_max over the years. The concentrations of PM2.5 were highest in December and January (in winter) and lowest in August (in summer). On the contrary, O3_max was highest in June. The diurnal variations of PM2.5 were affected by meteorological conditions and emission sources, and maximum concentrations occurred between 22:00 to 00:00, while minimum concentrations occurred between 14:00 to 16:00. The concentration of O3_max showed an opposite pattern, with minimum vales occurring at 07:00 and maximum values occurring in the afternoon. The spatial distribution of PM2.5 showed similar patterns in 2014 and 2019, with the south of Beijing exhibiting the highest concentrations, and the north the lowest. The concentration of O3_max was higher in suburban areas than in traffic areas. In terms of health impacts, 1580 cases of cardiovascular disease and 821 of respiratory disease were attributed to PM2.5 in 2014, while 2180 cases of respiratory disease were attributable to O3 in 2014. In 2019, mortalities attributable to PM2.5 had decreased by 50% compared to 2014. While the number of disease cases attributable to O3 were similar in 2014 and 2019. the results indicate that PM2.5 pollution in Beijing has been successfully controlled, while O3 pollution has become more severe, and was the primary air pollutant threatening human health in 2019. Therefore, the synchronous control of PM2.5 and O3 should be implemented in the future.

PDF全文下载地址:

https://www.hjkx.ac.cn/hjkx/ch/reader/create_pdf.aspx?file_no=20210901&flag=1&journal_id=hjkx&year_id=2021

相关话题/健康 南京信息工程大学 气象 北京 大气