中文关键词
臭氧(O3)空间格局气象要素多尺度地理加权回归(MGWR)中国 英文关键词ozone (O3)spatiotemporal patternmeteorological factorsmulti-scale geographically weighted regression (MGWR)China |
作者 | 单位 | E-mail | 何超 | 武汉大学资源与环境科学学院, 武汉 430079 | he_chao@whu.edu.cn | 慕航 | 武汉大学资源与环境科学学院, 武汉 430079 | | 杨璐 | 武汉大学资源与环境科学学院, 武汉 430079 | | 王丹璐 | 中国环境科学研究院, 环境基准与风险评估国家重点实验室, 北京 100012 | | 邸彦峰 | 广西师范大学环境与资源学院, 桂林 541006 | | 叶志祥 | 武汉大学资源与环境科学学院, 武汉 430079 | | 易嘉慧 | 武汉大学资源与环境科学学院, 武汉 430079 | | 柯碧钦 | 武汉大学资源与环境科学学院, 武汉 430079 | | 田雅 | 武汉大学资源与环境科学学院, 武汉 430079 | | 洪松 | 武汉大学资源与环境科学学院, 武汉 430079 | songhongpku@126.com |
|
中文摘要 |
中国的近地面臭氧(O3)浓度在2015~2018年间持续升高,已成为仅次于颗粒物的重要大气污染物.基于中国337个城市2015~2018年暖季(4~9月)的实时O3浓度数据和气象数据,利用趋势分析、空间自相关、热点分析和多尺度地理加权回归(MGWR),研究了2015~2018年中国暖季地表O3浓度的空间演变格局,探讨了气象因素对其驱动的空间差异性.结果表明:①中国暖季O3浓度整体呈显著升高趋势(P<0.05),平均升高速率为0.28 μg·(m3·a)-1,其中超过55%的城市O3浓度每年升高0.50 μg·m-3;②O3浓度存在明显的区域差异,高值区(平均浓度>60 μg·m-3)分布在华东、华北、华中和西北部分地区;低值区(平均浓度<20 μg·m-3)分布在华南和西南地区;③O3浓度变化趋势在空间上存在位于华东、华北、西北以及华中地区的热点区域和位于西南、华南(广西)以及东北地区的冷点区域;④气温是中国暖季O3变化的主要气象驱动因素,其对华北、西北和东北地区O3浓度的影响显著高于其他地区;除广西、云南和江西部分地区外,O3浓度与气温呈显著正相关;O3浓度在华南、华东和华中大部分地区与风速呈显著负相关,O3浓度在华北和东北部分地区与风速呈显著正相关;除辽宁、山东、河北、甘肃、广东及西南部分地区外,O3浓度与云层覆盖度呈显著负相关;除西北和西南部分地区外,O3浓度与降水呈显著负相关. |
英文摘要 |
The concentration of surface ozone (O3) in China increased consistently from 2015 to 2018, and became an important air pollutant, followed by particulate matter. This study uses real-time O3 and meteorological data, obtained in 337 cities in China during the warm seasons (April to September) of 2015 to 2018, to determine the spatial variation of surface O3 and its meteorological driving factors in major cities in China, via trend analysis, spatial autocorrelation, hotspot analysis, and multi-scale geographically weighted regression (MGWR) modeling. The results show that: ① during the warm season, O3 concentrations showed a significant growth trend (P<0.05), with an average growth rate of 0.28 μg·(m3·a)-1, while more than 55% of urban O3 concentrations increased by 0.50 μg·m-3 annually. ② There were significant regional differences in O3 concentration. High values (>60 μg·m-3) were distributed over east China, north China, central China, and northwest China, while low values (<20 μg·m-3) were distributed over south China and southwest China. ③ The spatial agglomeration of O3 concentration has been enhanced year by year, with hotspots mainly distributed over east China and central China. In contrast, there are cold spots in northeast China, southwest China, and southern China. ④Analysis of the MGWR model indicated that temperature, wind speed, cloud coverage, and precipitation all have a significant effect on the distribution of O3, although there are also discrepancies in driving factor priorities between the different regions. Temperature was the main meteorological driving factor of O3 variation during the warm season in China, and its impact on O3 concentration was significantly higher in north China, northwest China, and northeast China than in other regions; overall, there was a significant positive correlation between O3 concentration and temperature, except in Guangxi, Yunnan, and Jiangxi. O3 concentration was negatively correlated with wind speed in most regions of south China, east China, and central China, and positively correlated with wind speed in north China and northeast China. O3 concentration was significantly negatively correlated with cloud cover, except in Liaoning, Shandong, Hebei, Gansu, Guangdong, and some areas in southwest China. O3 concentration was significantly negatively correlated with precipitation, except in the northwest and southwest regions. |
PDF全文下载地址:
https://www.hjkx.ac.cn/hjkx/ch/reader/create_pdf.aspx?file_no=20210910&flag=1&journal_id=hjkx&year_id=2021