中文关键词
再生水灌溉生物质炭细菌群落病原菌 英文关键词reclaimed water irrigationbiocharbacterial communitypathogens |
作者 | 单位 | E-mail | 崔丙健 | 中国农业科学院农田灌溉研究所, 新乡 453002 中国农业科学院农业水资源高效安全利用重点开放实验室, 新乡 453002 | ayangcbj@126.com | 崔二苹 | 中国农业科学院农田灌溉研究所, 新乡 453002 中国农业科学院农业水资源高效安全利用重点开放实验室, 新乡 453002 | | 胡超 | 中国农业科学院农田灌溉研究所, 新乡 453002 中国农业科学院农业水资源高效安全利用重点开放实验室, 新乡 453002 | | 樊向阳 | 中国农业科学院农田灌溉研究所, 新乡 453002 中国农业科学院农业水资源高效安全利用重点开放实验室, 新乡 453002 | | 高峰 | 中国农业科学院农田灌溉研究所, 新乡 453002 中国农业科学院农业水资源高效安全利用重点开放实验室, 新乡 453002 | gaofengcaas@sina.com |
|
中文摘要 |
再生水利用是缓解农业灌溉水资源短缺的重要途径之一.生物质炭作为生物质废弃物一种有效的处置方式,已被广泛用于农业环境的改良与修复等方面,但关于施加生物质炭对再生水灌溉根际土壤微生物群落结构及病原菌丰度变化的影响研究较少.基于盆栽试验,采用高通量测序技术和定量PCR方法考察生物质炭种类对再生水灌溉根际土壤微生物群落结构多样性与病原菌丰度特征的影响及差异性.结果表明,不同种类生物质炭对改善土壤养分状况存在差异,稻壳生物质炭和水稻秸秆生物质炭导致再生水灌溉根际土壤pH显著增加,4种生物质炭均显著增加根际土壤的EC值(P<0.05).水稻秸秆生物质炭处理下根际土壤细菌群落的Sobs指数、Shannon指数和Chao1指数显著增加,而添加花生壳生物质炭、稻壳生物质炭和小麦秸秆生物质炭使Simpson指数均显著降低(P<0.05).不同处理根际土壤细菌群落相对丰度存在差异,门水平的优势类群主要为Proteobacteria、Actinobacteria、Chloroflexi、Bacteroidetes和Acidobacteria,优势菌属包括Pseudomonas、Rheinheimera、Arthrobacter、Sphingomonas和Aeromonas(相对丰度>5%).RDA和相关性Heatmap分析表明,不同处理根际土壤细菌群落多样性和组成与土壤EC值、有机质、总氮和镉含量显著相关(P<0.05).生物质炭种类对病原菌Aeromonas hydrophila和Bacillus cereus丰度均无显著影响,水稻秸秆生物质炭和花生壳生物质炭能够显著降低γ-Proteobacteria的相对丰度,而稻壳生物质炭和小麦秸秆生物质炭显著降低AOA的相对丰度(P<0.05).综上所述,再生水灌溉对土壤质量未产生明显的负面效应,添加生物质炭能够显著改善土壤理化性质,生物质炭的种类对根际土壤细菌群落结构和功能菌群丰度会产生一定的影响,并且这种影响与土壤性质密切相关. |
英文摘要 |
The utilization of reclaimed water is one of the most important ways of alleviating the shortage of water resources for agricultural irrigation. As an effective disposal method for biomass waste, biochar has been widely used in the improvement and remediation of agricultural environments. However, few studies have been performed on the effects of biochar application on microbial community structures and pathogen abundances in rhizosphere soils irrigated with reclaimed water. Based on a pot experiment, high throughput sequencing technology and quantitative polymerase chain reaction (PCR) methods were used to investigate the effects of different biochars on the microbial community structure and diversity and pathogen abundance of rhizosphere soils irrigated with reclaimed water. The results showed that four different types of biochars had different effects on the soil nutrient status. Rice hull-derived biochar and rice straw-derived biochar resulted in significantly increased soil pH with reclaimed water irrigation, while peanut shell-derived biochar, rice straw-derived biochar, and wheat straw-derived biochar significantly increased EC values (P<0.05). The Sobs index, Shannon index, and Chao1 index of bacterial community in the rhizosphere soil significantly increased with rice straw-derived biochar treatment, while the Simpson index significantly decreased by adding peanut shell-derived biochar, rice hull-derived biochar, and wheat straw-derived biochar (P<0.05). There were differences in the relative abundances of bacterial communities in rhizosphere soils under different treatments. The dominant taxonomic groups at the phylum level were Proteobacteria, Actinobacteria, Chloroflexi, Bacteroidetes, and Acidobacteria. The dominant genera included Pseudomonas, Rheinheimera, Arthrobacter, Sphingomonas, and Aeromonas (relative abundance>5%). Redundancy (RDA) and heatmap analyses showed that the diversities and compositions of bacterial communities in rhizosphere soils in different treatments were closely related to soil EC values, organic matter, total nitrogen, and cadmium contents. Biochar application had no significant effect on the abundances of Aeromonas hydrophila and Bacillus cereus. Rice straw-derived biochar and peanut shell-derived biochar could significantly reduce the γ-Proteobacteria, while rice hull-derived biochar and wheat straw-derived biochar could significantly reduce the relative abundance of AOA (P<0.05). In conclusion, there were no obvious negative effects observed from reclaimed water irrigation on soil quality. Biochar application not only significantly improved the physicochemical properties of the soil, but also impacted the bacterial community structure and the abundance of the functional bacteria in the rhizosphere soil, which was closely related to the soil properties. |
PDF全文下载地址:
https://www.hjkx.ac.cn/hjkx/ch/reader/create_pdf.aspx?file_no=20201245&flag=1&journal_id=hjkx&year_id=2020