删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

双酚F对斑马鱼早期生命阶段内分泌干扰效应研究

本站小编 Free考研考试/2021-12-30

杨倩1,
刘建梅2,
丁洁2,
陈丽红3,,
1. 南京财经大学食品科学与工程学院, 南京 210023;
2. 江苏雅信昆成检测科技有限公司, 南京 210034;
3. 南京中医药大学药学院, 南京 210023
作者简介: 杨倩(1986-),女,博士,研究方向为生态毒理学,E-mail:jsyqhappy@126.com.
通讯作者: 陈丽红,clh_helen@njucm.edu.cn
基金项目: 国家重点研发计划资助项目(2018YFC1801501);国家重点研发计划资助项目(2018YFC1706500)


中图分类号: X171.5


Endocrine Disrupting Effects of Bisphenol F on Early Life Stages of Zebrafish

Yang Qian1,
Liu Jianmei2,
Ding Jie2,
Chen Lihong3,,
1. College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China;
2. Jiangsu Yaxin Tech. Co. Ltd., Nanjing 210034, China;
3. School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
Corresponding author: Chen Lihong,clh_helen@njucm.edu.cn

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(43)
相关文章
施引文献
资源附件(0)
访问统计

摘要:双酚A (bisphenol,BPA)的内分泌干扰性导致许多国家出台了管控措施,双酚F (bisphenol F,BPF)作为其替代物被大量使用,并广泛存在于水体和食品中,导致人群和野生动物长期处于其慢性暴露过程中,可能会威胁人类和生态健康。以斑马鱼胚胎为研究模型,将其暴露于不同浓度的BPF中至受精后144 h (hours post fertilization,hpf),研究BPF对斑马鱼胚胎发育阶段的内分泌干扰作用。结果表明,BPF能够导致斑马鱼的畸形率升高,且具有剂量-效应关系。斑马鱼胚胎暴露于100 μg·L-1和1 000 μg·L-1 BPF后,引起了三碘甲状腺原氨酸(triiodothyronine,T3)水平升高,甲状腺素(thyroxine,T4)和类固醇皮质醇(cortisol,C)水平降低;而10 μg·L-1以上浓度BPF导致17β-雌二醇(17β-estradiol,E2)的水平显著性升高,睾酮(testosterone,T)水平显著性降低。另外,BPF导致下丘脑-垂体-甲状腺(hypothalamic-pituitary-thyroid,HPT)轴、下丘脑-垂体-性腺(hypothalamic-pituitary-gonadal,HPG)轴和下丘脑-垂体-肾上腺(hypothalamic-pituitary-adrenal,HPA)轴上一系列基因表达水平发生改变,这些改变会影响斑马鱼的内分泌功能,进而可能会对生物体的生长发育产生影响。
关键词: 双酚F/
斑马鱼/
内分泌干扰效应/
下丘脑-垂体-甲状腺轴/
下丘脑-垂体-性腺轴/
下丘脑-垂体-肾上腺轴

Abstract:Bisphenol A (BPA) has been banned in certain products due to its endocrine disrupting effects. Because of the restrictions, bisphenol F (BPF) has been developed to substitute BPA in the manufacture of polycarbonate and epoxy resins. The increased application of BPF has resulted in ubiquitous food and environmental pollution, thus humans and wild animals are the most likely to be under chronic exposure. In this study, zebrafish embryos were exposed to BPF from 2 to 144 hours post fertilization (hpf) to investigate the endocrine disrupting effects of BPF on early life stages of zebrafish. The results revealed that BPF increased the mortality in a dose-dependent manner. Exposure to 100 μg·L-1 and 1 000 μg·L-1 BPF increased triiodothyronine (T3) and 17β-estradiol (E2) levels, and decreased thyroxine (T4) and cortisol (C) levels. 10, 100 and 1 000 μg·L-1 BPF increased E2 levels, and decreased testosterone (T) levels. Expression of related genes along the hypothalamic-pituitary-thyroid (HPT), hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-adrenal (HPA) axes were also evaluated. Changes of gene expression in the HPT, HPG and HPA axes caused by BPF can affect the endocrine function of zebrafish, which may affect the growth and development of zebrafish.
Key words:bisphenol F/
zebrafish/
endocrine disrupting effects/
hypothalamic-pituitary-thyroid axis/
hypothalamic-pituitary-gonadal axis/
hypothalamic-pituitary-adrenal axis.

加载中
Chen D, Kannan K, Tan H L, et al. Bisphenol analogues other than BPA:Environmental occurrence, human exposure, and toxicity-A review[J]. Environmental Science & Technology, 2016, 50(11):5438-5453
Hu Y, Zhu Q Q, Yan X T, et al. Occurrence, fate and risk assessment of BPA and its substituents in wastewater treatment plant:A review[J]. Environmental Research, 2019, 178:108732
Huang Z, Zhao J L, Yang Y Y, et al. Occurrence, mass loads and risks of bisphenol analogues in the Pearl River Delta region, South China:Urban rainfall runoff as a potential source for receiving rivers[J]. Environmental Pollution, 2020, 263:114361
Yamazaki E, Yamashita N, Taniyasu S, et al. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India[J]. Ecotoxicology and Environmental Safety, 2015, 122:565-572
Kitamura S, Suzuki T, Sanoh S, et al. Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds[J]. Toxicological Sciences, 2005, 84(2):249-259
Rosenmai A K, Dybdahl M, Pedersen M, et al. Are structural analogues to bisphenol A safe alternatives?[J]. Toxicological Sciences, 2014, 139(1):35-47
Yang Q, Yang X H, Liu J N, et al. Effects of exposure to BPF on development and sexual differentiation during early life stages of zebrafish (Danio rerio)[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2018, 210:44-56
Ullah A, Pirzada M, Jahan S, et al. Bisphenol A and its analogs bisphenol B, bisphenol F, and bisphenol S:Comparative in vitro and in vivo studies on the sperms and testicular tissues of rats[J]. Chemosphere, 2018, 209:508-516
Swapna I, Senthilkumaran B. Thyroid hormones modulate the hypothalamo-hypophyseal-gonadal axis in teleosts:Molecular insights[J]. Fish Physiology and Biochemistry, 2007, 33(4):335-345
Bao A M, Meynen G, Swaab D F. The stress system in depression and neurodegeneration:Focus on the human hypothalamus[J]. Brain Research Reviews, 2008, 57(2):531-553
Bao A M, Fischer D F, Wu Y H, et al. A direct androgenic involvement in the expression of human corticotropin-releasing hormone[J]. Molecular Psychiatry, 2006, 11(6):567-576
Liu C S, Zhang X W, Deng J, et al. Effects of prochloraz or propylthiouracil on the cross-talk between the HPG, HPA, and HPT axes in zebrafish[J]. Environmental Science & Technology, 2011, 45(2):769-775
靳亚茹, 刘红玲, 韩志华, 等. BDE-28及BDE-99对斑马鱼早期生命阶段HPT、HPG和HPA轴功能基因表达水平的影响[J]. 生态毒理学报, 2018, 13(1):106-118Jin Y R, Liu H L, Han Z H, et al. Effects of BDE-28 and BDE-99 on functional gene expression along HPT, HPG and HPA axes during early life stages of zebrafish[J]. Asian Journal of Ecotoxicology, 2018, 13(1):106-118(in Chinese)
De Groef B, van der Geyten S, Darras V M, et al. Role of corticotropin-releasing hormone as a thyrotropin-releasing factor in non-mammalian vertebrates[J]. General and Comparative Endocrinology, 2006, 146(1):62-68
Liu C S, Yu H X, Zhang X W. Zebrafish embryos/larvae for rapid determination of effects on hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-interrenal (HPI) axis:mRNA expression[J]. Chemosphere, 2013, 93(10):2327-2332
Yu L Q, Han Z H, Liu C S. A review on the effects of PBDEs on thyroid and reproduction systems in fish[J]. General and Comparative Endocrinology, 2015, 219:64-73
Zhu L F, Li W, Zha J M, et al. Butachlor causes disruption of HPG and HPT axes in adult female rare minnow (Gobiocypris rarus)[J]. Chemico-Biological Interactions, 2014, 221:119-126
Zhu L F, Li W, Zha J M, et al. Chronic thiamethoxam exposure impairs the HPG and HPT axes in adult Chinese rare minnow (Gobiocypris rarus):Docking study, hormone levels, histology, and transcriptional responses[J]. Ecotoxicology and Environmental Safety, 2019, 185:109683
Laan M, Richmond H, He C M, et al. Zebrafish as a model for vertebrate reproduction:Characterization of the first functional zebrafish (Danio rerio) gonadotropin receptor[J]. General and Comparative Endocrinology, 2002, 125(3):349-364
McGonnell I M, Fowkes R C. Fishing for gene function-Endocrine modelling in the zebrafish[J]. The Journal of Endocrinology, 2006, 189(3):425-439
任文娟, 汪贞, 杨先海, 等. 双酚A及其类似物对斑马鱼成鱼及胚胎的急性毒性[J]. 生态与农村环境学报, 2017, 33(4):372-378Ren W J, Wang Z, Yang X H, et al. Acute toxicity effect of bisphenol A and its analogues on adult and embryo of zebrafish[J]. Journal of Ecology and Rural Environment, 2017, 33(4):372-378(in Chinese)
Ji K, Hong S, Kho Y, et al. Effects of bisphenol S exposure on endocrine functions and reproduction of zebrafish[J]. Environmental Science & Technology, 2013, 47(15):8793-8800
Chen X N, Hang X M, Ke W B, et al. Acute and subacute toxicity of bisphenol A on zebrafish (Danio rerio)[J]. Advanced Materials Research, 2011, 356-360:138-141
Song M Y, Liang D, Liang Y, et al. Assessing developmental toxicity and estrogenic activity of halogenated bisphenol A on zebrafish (Danio rerio)[J]. Chemosphere, 2014, 112:275-281
Duan Z H, Zhu L, Zhu L Y, et al. Individual and joint toxic effects of pentachlorophenol and bisphenol A on the development of zebrafish (Danio rerio) embryo[J]. Ecotoxicology and Environmental Safety, 2008, 71(3):774-780
Jensen K M, Kahl M D, Makynen E A, et al. Characterization of responses to the antiandrogen flutamide in a short-term reproduction assay with the fathead minnow[J]. Aquatic Toxicology, 2004, 70(2):99-110
Hontela A, Rasmussen J B, Audet C, et al. Impaired cortisol stress response in fish from environments polluted by PAHs, PCBs, and mercury[J]. Archives of Environmental Contamination and Toxicology, 1992, 22(3):278-283
Lema S C, Dickey J T, Schultz I R, et al. Thyroid hormone regulation of mRNAs encoding thyrotropin beta-subunit, glycoprotein alpha-subunit, and thyroid hormone receptors alpha and beta in brain, pituitary gland, liver, and gonads of an adult teleost, Pimephales promelas[J]. The Journal of Endocrinology, 2009, 202(1):43-54
Chen Q, Yu L Q, Yang L H, et al. Bioconcentration and metabolism of decabromodiphenyl ether (BDE-209) result in thyroid endocrine disruption in zebrafish larvae[J]. Aquatic Toxicology, 2012, 110-111:141-148
Wang Q W, Liang K, Liu J F, et al. Exposure of zebrafish embryos/larvae to TDCPP alters concentrations of thyroid hormones and transcriptions of genes involved in the hypothalamic-pituitary-thyroid axis[J]. Aquatic Toxicology, 2013, 126:207-213
Yu L, Chen M L, Liu Y H, et al. Thyroid endocrine disruption in zebrafish larvae following exposure to hexaco-nazole and tebuconazole[J]. Aquatic Toxicology, 2013, 138-139:35-42
Zhai W H, Huang Z G, Chen L, et al. Thyroid endocrine disruption in zebrafish larvae after exposure to mono-(2-ethylhexyl) phthalate (MEHP)[J]. PLoS One, 2014, 9(3):e92465
Tran T N, Fryer J N, Bennett H P J, et al. TRH stimulates the release of POMC-derived peptides from goldfish melanotropes[J]. Peptides, 1989, 10(4):835-841
Abbott M, Volkoff H. Thyrotropin releasing hormone (TRH) in goldfish (Carassius auratus):Role in the regulation of feeding and locomotor behaviors and interactions with the orexin system and cocaine-and amphetamine regulated transcript (CART)[J]. Hormones and Behavior, 2011, 59(2):236-245
Dohán O, Carrasco N. Advances in Na+/I- symporter (NIS) research in the thyroid and beyond[J]. Molecular and Cellular Endocrinology, 2003, 213(1):59-70
Porazzi P, Calebiro D, Benato F, et al. Thyroid gland development and function in the zebrafish model[J]. Molecular and Cellular Endocrinology, 2009, 312(1-2):14-23
Shi X J, Liu C S, Wu G Q, et al. Waterborne exposure to PFOS causes disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae[J]. Chemosphere, 2009, 77(7):1010-1018
Liu S Y, Chang J H, Zhao Y, et al. Changes of thyroid hormone levels and related gene expression in zebrafish on early life stage exposure to triadimefon[J]. Environmental Toxicology and Pharmacology, 2011, 32(3):472-477
梁燕秋. 孕激素物质黄体酮和甲炔诺酮对斑马鱼不同发育阶段的内分泌干扰效应[D]. 北京:中国科学院大学, 2016:36-37 Liang Y Q. Endocrine disrupting effects of progestins (progesterone and norgestrel) on the different stages of zebrafish (Danio rerio)[D]. Beijing:University of Chinese Academy of Sciences, 2016:36-37(in Chinese)
Kim J Y, Choi H G, Lee H M, et al. Effects of bisphenol compounds on the growth and epithelial mesenchymal transition of MCF-7 CV human breast cancer cells[J]. Journal of Biomedical Research, 2017, 31(4):358-369
Mesnage R, Phedonos A, Arno M, et al. Editor's highlight:Transcriptome profiling reveals bisphenol A alternatives activate estrogen receptor alpha in human breast cancer cells[J]. Toxicological Sciences, 2017, 158(2):431-443
Roy P, Datta M, Dasgupta S, et al. Gonadotropin-releasing hormone stimulates thyroid activity in a freshwater murrel, Channa gachua (Ham.), and carps, Catla catla (Ham.) and Cirrhinus mrigala (Ham.)[J]. General and Comparative Endocrinology, 2000, 117(3):456-463
Busby E R, Roch G J, Sherwood N M. Endocrinology of zebrafish:A small fish with a large gene pool[J]. Fish Physiology, 2010, 29:173-247

相关话题/干扰 胚胎 生态 基因 南京财经大学