删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

自噬抑制剂3-甲基腺嘌呤在纳米氧化铝致斑马鱼幼鱼早期神经毒性中的作用

本站小编 Free考研考试/2021-12-30

黄涛,
王艳红,
陈金,
范蓉,
尚楠,
高晓诚,
张兰,
牛侨,
张勤丽,
山西医科大学公共卫生学院劳动卫生教研室, 太原 030001
作者简介: 黄涛(1993-),男,硕士研究生,研究方向为纳米毒理学,E-mail:huangtao1358079362@163.com.
通讯作者: 张勤丽,zhangql9306111@gmail.com
基金项目: 国家自然科学基金资助项目(81673142);山西省自然科学基金资助项目(201901D111203)


中图分类号: X171.5


Role of Autophagy Inhibitor 3-Methyladenine in Early Neurotoxicity of Alumina Nanoparticles to Zebrafish Larvae

Huang Tao,
Wang Yanhong,
Chen Jin,
Fan Rong,
Shang Nan,
Gao Xiaocheng,
Zhang Lan,
Niu Qiao,
Zhang Qinli,
Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
Corresponding author: Zhang Qinli,zhangql9306111@gmail.com

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(38)
相关文章
施引文献
资源附件(0)
访问统计

摘要:由于纳米氧化铝(alumina nanoparticles,AlNPs)独特的理化性质,被广泛应用于医药、电子和化妆品等多个领域,但关于AlNPs的早期神经毒性效应及其潜在机制尚未完全阐明。为探讨AlNPs的毒作用机制,以及自噬抑制剂3-甲基腺嘌呤(3-methyladenine,3MA)对AlNPs致斑马鱼幼鱼早期神经毒性的影响,将6 hpf (hours post-fertilization)的斑马鱼胚胎分为对照组、3MA组、AlNPs组和AlNPs+3MA组。观察胚胎和幼鱼的形态学变化以及幼鱼的一般毒性,并检测神经行为改变、氧化应激水平以及幼鱼体内自噬相关基因beclin1lc3 Ⅱvps34的表达情况。结果表明,各组幼鱼在死亡率、孵化率和畸形率方面无显著性差异。形态学观察结果显示,AlNPs组受精卵在12 hpf和24 hpf出现发育迟缓,加入3MA后,在24 hpf后受精卵发育好转。运动行为检测发现,AlNPs组幼鱼黑暗状态下的平均速度、移动距离和趋触性程度显著降低(P<0.05)。在强光刺激下的惊恐逃避反射实验中,AlNPs组幼鱼在光照时的速度显著降低(P<0.05)。氧化应激水平检测结果显示,AlNPs组超氧化物歧化酶(superoxide dismutase,SOD)活性显著降低(P<0.05),而AlNPs组乳酸脱氢酶(lactate dehydrogenase,LDH)活性显著升高(P<0.05)。自噬相关基因beclin1、lc3 Ⅱ和vps34在AlNPs组表达均显著升高,加入3MA后,基因表达降低,并具有统计学意义(P<0.05)。上述结果表明,AlNPs诱导过度自噬的发生造成斑马鱼幼鱼早期神经毒性,而3MA可以减轻AlNPs引起的氧化损伤并下调自噬相关基因的表达,明显改善AlNPs暴露所致的早期神经毒性。
关键词: AlNPs/
斑马鱼/
神经毒性/
氧化应激/
自噬/
3MA

Abstract:Alumina nanoparticles (AlNPs) are widely used in the medicine, electronics, and cosmetics due to its unique physical and chemical properties, but the neurotoxic effect and the potential mechanism of AlNPs has not yet been elucidated. In order to investigate the toxic mechanism of AlNPs and the effect of autophagy inhibitor 3-methyladenine (3MA) on the neurotoxicity of AlNPs to zebrafish larvae, zebrafish embryos were divided into control group, 3MA group, AlNPs group and AlNPs+3MA group at 6 hours post-fertilization (hpf). The morphological changes of embryos and larvae and the general toxicity of larvae were observed, and the neurobehavioral changes, oxidative stress levels and the transcriptional changes of autophagy-related genes (beclin1, lc3 Ⅱ and vps34) were detected. Our results showed that no significant differences were found for mortality, hatching rate, and deformity rate among groups. The results of morphological observation showed that the zebrafish embryos in AlNPs group developed slowly at 12 hpf and 24 hpf. After 3MA was added, the development of zebrafish embryos was improved after 24 hpf from developmental delay observed at 12 hpf in AlNPs+3MA group. The average swimming speed, moving distance and tactile degree of fish in the AlNPs group were significantly lower (P<0.05). In the panic avoidance reflex test under strong light stimulation, the speed of larvae in AlNPs group was significantly decreased (P<0.05). Superoxide dismutase (SOD) levels decreased, whereas the levels of lactate dehydrogenase (LDH) increased in AlNPs exposed fish (P<0.05). Moreover, the expression of beclin1, lc3 Ⅱ and vps34 gene was increased in AlNPs group, and decreased after adding 3MA (P<0.05). Our results suggest that neurotoxicity of zebrafish larvae induced by AlNPs could be related to excessive autophagy, and 3MA could reduce the oxidative damage and down-regulate the expression of autophagy-related genes, and significantly decrease the neurotoxicity induced by AlNPs exposure.
Key words:AlNPs/
zebrafish/
neurotoxicity/
oxidative stress/
autophagy/
3MA.

加载中
Nel A, Xia T, Mädler L, et al. Toxic potential of materials at the nanolevel[J]. Science, 2006, 311(5761):622-627
Ju-Nam Y, Lead J R. Manufactured nanoparticles:An overview of their chemistry, interactions and potential environmental implications[J]. Science of the Total Environment, 2008, 400(1-3):396-414
Engin A B, Engin A. Nanoparticles and neurotoxicity:Dual response of glutamatergic receptors[J]. Progress in Brain Research, 2019, 245:281-303
Song Y G, Li X, Wang L Y, et al. Nanomaterials in humans:Identification, characteristics, and potential damage[J]. Toxicologic Pathology, 2011, 39(5):841-849
Keelan J A. Nanotoxicology:Nanoparticles versus the placenta[J]. Nature Nanotechnology, 2011, 6(5):263-264
Sharma H S, Sharma A. Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology[J]. Progress in Brain Research, 2007, 162:245-273
Ismail T, Lee H K, Kim C, et al. Comparative analysis of the developmental toxicity in Xenopus laevis and Danio rerio induced by Al2O3 nanoparticle exposure[J]. Environmental Toxicology and Chemistry, 2019, 38(12):2672-2681
Dong L, Tang S, Deng F C, et al. Shape-dependent toxicity of alumina nanoparticles in rat astrocytes[J]. Science of the Total Environment, 2019, 690:158-166
Shrivastava R, Raza S, Yadav A, et al. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain[J]. Drug and Chemical Toxicology, 2014, 37(3):336-347
Xilouri M, Brekk O R, Stefanis L. Autophagy and alpha-synuclein:Relevance to Parkinson's disease and related synucleopathies[J]. Movement Disorders, 2016, 31(2):178-192
Suresh S N, Chavalmane A K, Pillai M, et al. Modulation of autophagy by a small molecule inverse agonist of ERRα is neuroprotective[J]. Frontiers in Molecular Neuroscience, 2018, 11:109
封秀梅, 许明敏, 黄辰, 等. 自噬抑制剂3-MA在神经系统疾病中的作用的研究进展[J]. 中国比较医学杂志, 2019, 29(8):129-134Feng X M, Xu M M, Huang C, et al. Research progress on the role of autophagy inhibitor, 3-methyladenine, in nervous system diseases[J]. Chinese Journal of Comparative Medicine, 2019, 29(8):129-134(in Chinese)
Seglen P O, Gordon P B. 3-methyladenine:Specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(6):1889-1892
杨叶, 陈尚雅, 张恩国, 等. 纳米材料诱导细胞自噬的研究进展[J]. 中国工业医学杂志, 2017, 30(5):348-351, 401 Yang Y, Chen S Y, Zhang E G, et al. Progress in study on cell autophagy induced by nanomaterials[J]. Chinese Journal of Industrial Medicine, 2017, 30(5):348-351, 401(in Chinese)
葛翠翠. 不同粒径纳米氧化铝致神经细胞死亡方式的研究[D]. 太原:山西医科大学, 2012:11-31 Ge C C. Study on the death pattern of nerve cells induced by alumina nanoparticles with different particle sizes[D]. Taiyuan:Shanxi Medical University, 2012:11-31(in Chinese)
陈金, 范蓉, 张萍, 等. 纳米氧化铝对斑马鱼幼鱼的神经毒性及mTOR基因的作用[J]. 环境与职业医学, 2019, 36(5):431-437Chen J, Fan R, Zhang P, et al. Al2O3 nanoparticles induced neurotoxicity and role of mTOR gene in zebrafish larvae[J]. Journal of Environmental and Occupational Medicine, 2019, 36(5):431-437(in Chinese)
Schnörr S J, Steenbergen P J, Richardson M K, et al. Measuring thigmotaxis in larval zebrafish[J]. Behavioural Brain Research, 2012, 228(2):367-374
Johnston H J, Verdon R, Gillies S, et al. Adoption of in vitro systems and zebrafish embryos as alternative models for reducing rodent use in assessments of immunological and oxidative stress responses to nanomaterials[J]. Critical Reviews in Toxicology, 2018, 48(3):252-271
Dong E Y, Wang Y L, Yang S T, et al. Toxicity of nano gamma alumina to neural stem cells[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(9):7848-7856
Braydich-Stolle L K, Speshock J L, Castle A, et al. Nanosized aluminum altered immune function[J]. ACS Nano, 2010, 4(7):3661-3670
Balasubramanyam A, Sailaja N, Mahboob M, et al. In vivo genotoxicity assessment of aluminium oxide nanomaterials in rat peripheral blood cells using the comet assay and micronucleus test[J]. Mutagenesis, 2009, 24(3):245-251
Zhang Q L, Li M Q, Ji J W, et al. In vivo toxicity of nano-alumina on mice neurobehavioral profiles and the potential mechanisms[J]. International Journal of Immunopathology and Pharmacology, 2011, 24(Suppl.1):23S-29S
Zhang Q L, Xu L, Wang J, et al. Lysosomes involved in the cellular toxicity of nano-alumina:Combined effects of particle size and chemical composition[J]. Journal of Biological Regulators and Homeostatic Agents, 2013, 27(2):365-375
Lee C Y, Horng J L, Chen P Y, et al. Silver nanoparticle exposure impairs ion regulation in zebrafish embryos[J]. Aquatic Toxicology, 2019, 214:105263
Bar-Ilan O, Chuang C C, Schwahn D J, et al. TiO2 nanoparticle exposure and illumination during zebrafish development:Mortality at parts per billion concentrations[J]. Environmental Science & Technology, 2013, 47(9):4726-4733
Saverino C, Gerlai R. The social zebrafish:Behavioral responses to conspecific, heterospecific, and computer animated fish[J]. Behavioural Brain Research, 2008, 191(1):77-87
Tierney K B. Behavioural assessments of neurotoxic effects and neurodegeneration in zebrafish[J]. Biochimica et Biophysica Acta, 2011, 1812(3):381-389
Grinde B. Autophagy and lysosomal proteolysis in the liver[J]. Experientia, 1985, 41(9):1089-1095
Wu Y Y, Wang X, Guo H J, et al. Synthesis and screening of 3-MA derivatives for autophagy inhibitors[J]. Autophagy, 2013, 9(4):595-603
阮雯静, 万福生. Beclin1-Vps34在自噬发生发展中的作用[J]. 中国细胞生物学学报, 2016, 38(11):1420-1426Ruan W J, Wan F S. The role of Beclin1-Vps34 in the development of autophagy[J]. Chinese Journal of Cell Biology, 2016, 38(11):1420-1426(in Chinese)
Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy:The clash between damage and metabolic needs[J]. Cell Death and Differentiation, 2015, 22(3):377-388
Nunomura A, Perry G, Aliev G, et al. Oxidative damage is the earliest event in Alzheimer disease[J]. Journal of Neuropathology and Experimental Neurology, 2001, 60(8):759-767
齐艺, 李艳博, 郭彩霞. 纳米材料诱导线粒体自噬研究进展[J]. 环境与职业医学, 2019, 36(8):791-796Qi Y, Li Y B, Guo C X. Research progress on mitophagy induced by nanomaterials[J]. Journal of Environmental and Occupational Medicine, 2019, 36(8):791-796(in Chinese)
Li H, Huang T, Wang Y H, et al. Toxicity of alumina nanoparticles in the immune system of mice[J]. Nanomedicine, 2020, 15(9):927-946
Lei Q, Yi T, Chen C. NF-κB-gasdermin D (GSDMD) axis couples oxidative stress and NACHT, LRR and PYD domains-containing protein 3(NLRP3) inflammasome-mediated cardiomyocyte pyroptosis following myocardial infarction[J]. Medical Science Monitor:International Medical Journal of Experimental and Clinical Research, 2018, 24:6044-6052
Backer J M. The regulation and function of Class Ⅲ PI3Ks:Novel roles for Vps34[J]. The Biochemical Journal, 2008, 410(1):1-17
Zhu J L, Cai Y S, Xu K, et al. Beclin1 overexpression suppresses tumor cell proliferation and survival via an autophagy-dependent pathway in human synovial sarcoma cells[J]. Oncology Reports, 2018, 40(4):1927-1936
Tanida I, Ueno T, Kominami E. LC3 and autophagy[J]. Methods in Molecular Biology, 2008, 445:77-88

相关话题/神经 基因 纳米 医学 山西医科大学