删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

府河水体及沉积物细菌群落结构分布特征及其影响因素

本站小编 Free考研考试/2021-12-30

刘幸春1,2,3,
王洪杰1,2,3,
王亚利1,2,3,
王英俊1,4,
刘玲1,2,3
1. 河北大学雄安生态环境研究院, 保定 071002;
2. 河北大学生命科学与绿色发展研究院, 保定 071002;
3. 河北大学生命科学学院, 保定 071002;
4. 河北雄安新区生态环境局, 雄安新区 071000
作者简介: 刘幸春(1995-),女,硕士研究生,研究方向为生态毒理学,E-mail:lxc95@hotmail.com.
基金项目: 国家水体污染控制与治理科技重大专项(2018ZX07110);国家自然科学基金资助项目(51778054)


中图分类号: X171.5


Distribution Characteristics and Influencing Factors of Bacteria Community Structure in Water and Sediments of Fuhe River

Liu Xingchun1,2,3,
Wang Hongjie1,2,3,
Wang Yali1,2,3,
Wang Yingjun1,4,
Liu Ling1,2,3
1. Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China;
2. Institute of Life Science and Green Development, Hebei University, Baoding 071002, China;
3. College of Life Sciences, Hebei University, Baoding 071002, China;
4. Ecological Environment Bureau of Xiong'an New Area, Xiong'an New Area 071000, China

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(47)
相关文章
施引文献
资源附件(0)
访问统计

摘要:城市河流承接不同类型的废水导致水质恶化,影响河流生态系统。通过分析河流细菌群落结构变化,不仅可以判断河流污染特征,还将有助于河流污染治理与生态修复。笔者研究了府河夏季上下游水体和沉积物理化性质,并采用高通量测序法分析了细菌群落结构特征。结果表明,府河上游水质化学需氧量(COD)、氨氮(NH3-N)和总磷(TP)浓度显著高于下游(P<0.05),沉积物中重金属镉、锌和铅含量较高,均值分别为(0.44±0.03)、(182.17±0.34)和(35.76±0.20) mg·kg-1。府河沉积物细菌多样性及丰富度明显高于相应上覆水体,变形菌门(Proteobacteria)是水体和沉积物中的第一优势菌,水体中参与氮循环的蓝藻菌门(Cyanobacteria)的高丰度说明府河存在一定的富营养化,此外,可以分解有机物的放线菌门(Actinobacteria)在下游丰度高于上游;沉积物中具有致病作用的拟杆菌门(Bacteroidetes)在上游城市河段丰度较高。细菌群落空间异质性结果表明下游硝化细菌(nitrifying bacteria)和反硝化细菌(denitrifying bacteria)的丰度(分别为62.25%和31.29%)明显比上游高。水体细菌多样性和温度、pH、总有机碳有显著相关性(P<0.05),冗余分析显示NH3-N、总氮(TN)、TP和pH对细菌群落结构影响较大;而pH、TN和重金属镉是影响下游沉积物细菌群落结构的主要环境因子。
关键词: 府河/
细菌/
多样性/
群落结构/
环境因子

Abstract:Different types of wastewater entering into urban rivers lead to the deterioration of river water quality and affect river ecosystem. Analyzing the changes in bacterial community structure of rivers can not only judge the characteristics of river pollution, but also help river pollution control and ecological restoration. In this paper, the physical and chemical properties of water and sediments of Fuhe River in summer were studied, and the characteristics of bacterial community structure were analyzed by high-throughput sequencing. The results showed that the concentrations of chemical oxygen demand (COD), ammonia nitrogen (NH3-N), and total phosphorus (TP) in the upstream of Fuhe River were significantly higher than that in the downstream (P<0.05), and the contents of cadmium, zink and lead in the sediments were high with an average value of (0.44±0.03), (182.17±0.34) and (35.76±0. 20) mg·kg-1, respectively. The bacterial diversity and richness in sediments of Fuhe River were significantly higher than those in the corresponding overlying water. Proteobacteria was the first dominant bacteria in the water and sediments. The high abundance of Cyanobacteria, which is involved in nitrogen cycle, indicated that there was certain eutrophication in Fuhe River. In addition, the abundance of Actinobacteria, which can decompose organic matters, was higher in the downstream than that in the upstream. The pathogenic Bacteroidetes was abundant in the upstream urban reach. The results of spatial heterogeneity of bacterial communities showed that nitrifying bacteria and denitrifying bacteria with a respective abundance of 62.25% and 31.29% were found to be higher in downstream than those in upstream. Correlation analysis showed that bacterial diversity was significantly correlated with temperature, pH, and total organic carbon (P<0.05). Redundancy analysis showed that NH3-N, total nitrogen (TN), TP and pH had great impact on the bacterial community structure in water, while pH, TN and cadmium were the main environmental factors affecting the bacterial community structure in the downstream sediment.
Key words:Fuhe River/
bacteria/
diversity/
community structure/
environmental factors.

加载中
杨宏, 李会琳, 路璐. 嘉陵江(南充段)水体及其底泥中氨氧化微生物群落空间分布特征及其与环境因子关系[J]. 长江流域资源与环境, 2018, 27(8):1836-1846Yang H, Li H L, Lu L. Spatial distribution of ammoniaoxidizing microorganism in surface water and sediment in Jialing River (Nanchong section) and their relationship with environmental factors[J]. Resources and Environment in the Yangtze Basin, 2018, 27(8):1836-1846(in Chinese)
董萍, 孙寓姣, 王红旗, 等. 利用T-RFLP技术对温榆河微生物群落结构研究[J]. 中国环境科学, 2011, 31(4):631-636Dong P, Sun Y J, Wang H Q, et al. Study of micro-ecosystem of the Wenyu River by terminal restriction fragment length polymorphism analysis[J]. China Environmental Science, 2011, 31(4):631-636(in Chinese)
Cébron A, Garnier J. Nitrobacter and Nitrospira genera as representatives of nitrite-oxidizing bacteria:Detection, quantification and growth along the lower Seine River (France)[J]. Water Research, 2005, 39(20):4979-4992
Findlay S. Stream microbial ecology[J]. Journal of the North American Benthological Society, 2010, 29(1):170-181
Jiang J G, Shen Y F. Development of the microbial communities in Lake Donghu in relation to water quality[J]. Environmental Monitoring and Assessment, 2007, 127(1-3):227-236
王鹏, 陈波, 李传琼, 等. 赣江南昌段丰水期细菌群落特征[J]. 中国环境科学, 2016, 36(8):2453-2462Wang P, Chen B, Li C Q, et al. Bacterial communities in Nanchang section of the Ganjiang River in wet season[J]. China Environmental Science, 2016, 36(8):2453-2462(in Chinese)
刘峰, 冯民权, 王毅博. 汾河入黄口夏季微生物群落结构分析[J]. 微生物学通报, 2019, 46(1):54-64Liu F, Feng M Q, Wang Y B. Microbial community structure of estuary of the Fenhe River into the Yellow River in summer[J]. Microbiology China, 2019, 46(1):54-64(in Chinese)
白洁, 刘小沙, 侯瑞, 等. 南海南部海域浮游细菌群落特征及影响因素研究[J]. 中国环境科学, 2014, 34(11):2950-2957Bai J, Liu X S, Hou R, et al. Community structure and influencing factors of bacterioplankton in the sout hern South China Sea[J]. China Environmental Science, 2014, 34(11):2950-2957(in Chinese)
魏佳明, 崔丽娟, 李伟, 等. 表流湿地细菌群落结构特征[J]. 环境科学, 2016, 37(11):4357-4365Wei J M, Cui L J, Li W, et al. Characteristics of bacterial communities in surface-flow constructed wetlands[J]. Environmental Science, 2016, 37(11):4357-4365(in Chinese)
Staley C, Johnson D, Gould T J, et al. Frequencies of heavy metal resistance are associated with land cover type in the Upper Mississippi River[J]. Science of the Total Environment, 2015, 511:461-468
张雅洁, 李珂, 朱浩然, 等. 北海湖微生物群落结构随季节变化特征[J]. 环境科学, 2017, 38(8):3319-3329Zhang Y J, Li K, Zhu H R, et al. Community structure of microorganisms and its seasonal variation in Beihai Lake[J]. Environmental Science, 2017, 38(8):3319-3329(in Chinese)
陈兆进, 丁传雨, 朱静亚, 等. 丹江口水库枯水期浮游细菌群落组成及影响因素研究[J]. 中国环境科学, 2017, 37(1):336-344Chen Z J, Ding C Y, Zhu J Y, et al. Community structure and influencing factors of bacterioplankton during low water periods in Danjiangkou Reservoir[J]. China Environmental Science, 2017, 37(1):336-344(in Chinese)
高磊, 包卫洋, 张天文, 等. 水体碳氮比对芽孢杆菌、乳酸菌与弧菌生长、拮抗作用及菌体碳氮比的影响[J]. 中国海洋大学学报:自然科学版, 2013, 43(1):34-40Gao L, Bao W Y, Zhang T W, et al. Effect of water C:N ratio on the growth, antagonism and C:N ratio of Bacillus, lactic acid bacteria and Vibrio[J]. Periodical of Ocean University of China, 2013, 43(1):34-40(in Chinese)
李静, 陈芝兰, 李小卫. 西藏湿地生态系统中氮循环微生物数量和多样性研究[J]. 西藏科技, 2015(4):70-72, 78
王晓辉, 郭光霞, 郑瑞伦, 等. 生物炭对设施退化土壤氮相关功能微生物群落丰度的影响[J]. 土壤学报, 2013, 50(3):624-631Wang X H, Guo G X, Zheng R L, et al. Effect of biochar on abundance of N-related functional microbial communities in degraded greenhouse soil[J]. Acta Pedologica Sinica, 2013, 50(3):624-631(in Chinese)
刘睿, 吴巍, 周孝德, 等. 渭河浮游细菌群落结构特征及其关键驱动因子[J]. 环境科学学报, 2017, 37(3):934-944Liu R, Wu W, Zhou X D, et al. Bacterioplankton community structure in Weihe River and its relationship with environmental factors[J]. Acta Scientiae Circumstantiae, 2017, 37(3):934-944(in Chinese)
Zhang M Z, Wu Z J, Sun Q Y, et al. The spatial and seasonal variations of bacterial community structure and influencing factors in river sediments[J]. Journal of Environmental Management, 2019, 248:109293
江玉梅, 张晨, 黄小兰, 等. 重金属污染对鄱阳湖底泥微生物群落结构的影响[J]. 中国环境科学, 2016, 36(11):3475-3486Jiang Y M, Zhang C, Huang X L, et al. Effect of heavy metals in the sediment of Poyang Lake estuary on microbial communities structure base on Mi-seq sequencing[J]. China Environmental Science, 2016, 36(11):3475-3486(in Chinese)
Grandlic C J, Geib I, Pilon R, et al. Lead pollution in a large, prairie-pothole lake (Rush Lake, WI, USA):Effects on abundance and community structure of indigenous sediment bacteria[J]. Environmental Pollution, 2006, 144(1):119-126
Chodak M, Gołębiewski M, Morawska-Płoskonka J, et al. Diversity of microorganisms from forest soils differently polluted with heavy metals[J]. Applied Soil Ecology, 2013, 64:7-14
袁瑞强, 牛漾聃, 王鹏, 等. 引黄对受水河段沉积物微生物群落的影响[J]. 环境科学学报, 2019, 39(2):499-508Yuan R Q, Niu Y D, Wang P, et al. Effects of the Yellow River diversion on microbial communities in sediments of the receiving reach[J]. Acta Scientiae Circumstantiae, 2019, 39(2):499-508(in Chinese)
陈杰. 保定府河水质评价研究[J]. 现代商贸工业, 2019, 40(15):187-188
胡国成, 许木启, 许振成, 等. 府河-白洋淀沉积物中重金属污染特征及潜在风险评价[J]. 农业环境科学学报, 2011, 30(1):146-153Hu G C, Xu M Q, Xu Z C, et al. Pollution characteristic and potential risk assessment of heavy metals in surface sediment from Fuhe River and Baiyangdian Lake, North China[J]. Journal of Agro-Environment Science, 2011, 30(1):146-153(in Chinese)
李冰, 王亚, 郑钊, 等. 丹江口水库调水前后表层沉积物营养盐和重金属时空变化[J]. 环境科学, 2018, 39(8):3591-3600Li B, Wang Y, Zheng Z, et al. Temporal and spatial changes in sediment nutrients and heavy metals of the Danjiangkou Reservoir before and after water division of the mid-route project[J]. Environmental Science, 2018, 39(8):3591-3600(in Chinese)
Liu J Z, Tang J, Wan J J, et al. Functional sustainability of periphytic biofilms in organic matter and Cu2+ removal during prolonged exposure to TiO2 nanoparticles[J]. Journal of Hazardous Materials, 2019, 370:4-12
Li Y Y, Wang Y L, Wan D J, et al. Pilot-scale application of sulfur-limestone autotrophic denitrification biofilter for municipal tailwater treatment:Performance and microbial community structure[J]. Bioresource Technology, 2020, 300:122682
中华人民共和国环境保护部. 土壤和沉积物汞、砷、硒、铋、锑的测定微波消解/原子荧光法:HJ680-2013[S]. 北京:中华人民共和国环境保护部, 2013 Ministry of Environmental Protection of the People's Republic of China. Soil and sediment-Determination of mercury, arsenic, selenium, bismuth, antimony-Microwave dissolution/atomic fluorescence spectrometry:HJ680-2013[S]. Beijing:Ministry of Environmental Protection of the People's Republic of China, 2013
中华人民共和国环境保护部. 土壤总铬的测定火焰原子吸收分光光度法:HJ491-2009[S]. 北京:中华人民共和国环境保护部, 2009 Ministry of Environmental Protection of the People's Republic of China. Soil quality-Determination of total chromium-Flame atomic absorption spectrometry:HJ491-2009[S]. Beijing:Ministry of Environmental Protection of the People's Republic of China, 2009(in Chinese)
中华人民共和国国家环境保护局. 土壤质量铜、锌的测定火焰原子吸收分光光度法:GB T17138-1997[S]. 北京:中华人民共和国国家环境保护局, 1997 State Environmental Protection Administration of the People's Republic of China. Soil quality-Determination of copper, zinc-Flame atomic absorption spectrophotometry:GB T17138-1997[S]. Beijing:State Environmental Protection Administration of the People's Republic of China, 1997(in Chinese)
中华人民共和国国家环境保护局. 土壤质量铅、镉的测定石墨炉原子吸收分光光度法:GB T17141-1997[S]. 北京:中华人民共和国国家环境保护局, 1997 State Environmental Protection Administration of the People's Republic of China. Soil quality-Determination of lead, cadmium-Graphite furnace atomic absorption spectrophotometry:GB T17141-1997[S]. Beijing:State Environmental Protection Administration of the People's Republic of China, 1997(in Chinese)
中华人民共和国国家环境保护局. 土壤质量镍的测定火焰原子吸收分光光度法:GB T17139-1997[S]. 北京:中华人民共和国国家环境保护局, 1997 State Environmental Protection Administration of the People's Republic of China. Soil quality-Determination of nickle-Flame atomic absorption spectrophotometry:T17139-1997[S]. Beijing:State Environmental Protection Administration of the People's Republic of China, 1997(in Chinese)
金笑. 鄱阳湖表层沉积物细菌群落结构与功能的时空差异研究[D]. 南昌:南昌大学, 2017:32 Jin X. Study on the spatial-temporal distribution of surface sediment bacterial community structure and function in Poyang Lake[D]. Nanchang:Nanchang University, 2017:32(in Chinese)
中华人民共和国国家环境保护局. 土壤环境质量标准:GB15618-1995[S]. 北京:中国标准出版社, 1995
中国环境监测总站. 中国土壤元素背景值[M]. 北京:中国环境科学出版社, 1990:87-91
王丹, 侯珍, 张琪, 等. 表层沉积物中6:2氟调醇生物降解对细菌群落结构的影响[J]. 环境科学, 2017, 38(11):4747-4755Wang D, Hou Z, Zhang Q, et al. Impact of the biodegradation of 6:2 fluorotelomer alcohol on the bacterial community structure of surface sediment[J]. Environmental Science, 2017, 38(11):4747-4755(in Chinese)
赵欣艳, 王海燕, 侯泽英, 等. 洱海沙坪湾湖滨带不同植被带中细菌分布特征[J]. 环境科学研究, 2017, 30(5):705-711Zhao X Y, Wang H Y, Hou Z Y, et al. Bacteria distribution characteristics of different vegetation belts along Shapingwan riparian zone of Erhai Lake[J]. Research of Environmental Sciences, 2017, 30(5):705-711(in Chinese)
Wang P, Chen B, Yuan R Q, et al. Characteristics of aquatic bacterial community and the influencing factors in an urban river[J]. Science of the Total Environment, 2016, 569-570:382-389
林海, 蔡怡清, 李冰, 等. 北京市妫水河底泥微生物群落结构特征[J]. 生态学报, 2019, 39(20):7592-7601Lin H, Cai Y Q, Li B, et al. Characteristics of microbial community structure in Guishui River sediment in Beijing[J]. Acta Ecologica Sinica, 2019, 39(20):7592-7601(in Chinese)
Gao Y, Wang C C, Zhang W G, et al. Vertical and horizontal assemblage patterns of bacterial communities in a eutrophic river receiving domestic wastewater in sout heast China[J]. Environmental Pollution, 2017, 230:469-478
任丽娟, 何聃, 邢鹏, 等. 湖泊水体细菌多样性及其生态功能研究进展[J]. 生物多样性, 2013, 21(4):422-433Ren L J, He D, Xing P, et al. Bacterial diversity and ecological function in lake water bodies[J]. Biodiversity Science, 2013, 21(4):422-433(in Chinese)
Rashidan K K, Bird D F. Role of predatory bacteria in the termination of a cyanobacterial bloom[J]. Microbial Ecology, 2001, 41(2):97-105
奚万艳, 吴鑫, 叶文瑾, 等. 太湖梅梁湾水域蓝藻水华前与水华末期细菌群落结构的变化[J]. 应用与环境生物学报, 2007, 13(1):97-103Xi W Y, Wu X, Ye W J, et al. Changes in bacterial community structure during preceding and degraded period of cyanobacterial bloom in a bay of the Taihu Lake[J]. Chinese Journal of Applied & Environmental Biology, 2007, 13(1):97-103(in Chinese)
Kanaly R A, Harayama S. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria[J]. Journal of Bacteriology, 2000, 182(8):2059-2067
陈丽蓉. 北极深海沉积物中微生物的多样性研究[D]. 杭州:浙江理工大学, 2012:35 Chen L R. The investigation on microbial diversity of arctic deep sea sediments[D]. Hangzhou:Zhejiang Sci-Tech University, 2012:35(in Chinese)
李垒, 孟庆义, 叶飞, 等. 密云水库入库河流水体总细菌和反硝化菌群落组成与结构[J]. 水生态学杂志, 2018, 39(6):44-51Li L, Meng Q Y, Ye F, et al. Microbial community structures of total bacteria and denitrifying bacteria in the tributaries of Miyun Reservoir[J]. Journal of Hydroecology, 2018, 39(6):44-51(in Chinese)
赵思颖, 倪才英, 符文昌, 等. 鄱阳湖流域底泥微生物对环境变量的响应[J]. 江西师范大学学报:自然科学版, 2016, 40(2):194-199Zhao S Y, Ni C Y, Fu W C, et al. The microbial response to environmental parameters of the sediment in Poyang Lake basin[J]. Journal of Jiangxi Normal University:Natural Science Edition, 2016, 40(2):194-199(in Chinese)
Shen C C, Xiong J B, Zhang H Y, et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain[J]. Soil Biology and Biochemistry, 2013, 57:204-211

相关话题/结构 环境科学 微生物 土壤 北京