申立娜1,
张玲菲1,
秦珊1,
姚波1,2,
崔建升1,2
1. 河北科技大学环境科学与工程学院, 石家庄 050000;
2. 河北省污染防治生物技术实验室, 石家庄 050000
作者简介: 张璐璐(1985-),女,博士,副教授,研究方向为环境变化对湖泊生态系统结构和功能的影响,E-mail:zhanglulu19850703@163.com.
基金项目: 河北省社会科学基金资助项目(HB19YJ023)中图分类号: X171.5
The Correlation between Periphyton Community Indicator and Typical Antibiotics in Baiyangdian Lake
Zhang Lulu1,2,Shen Lina1,
Zhang Lingfei1,
Qin Shan1,
Yao Bo1,2,
Cui Jiansheng1,2
1. Academy of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China;
2. Biotechnology Laboratory for Pollution Control in Hebei Province, Shijiazhuang 050000, China
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:底栖藻类作为湖泊中主要的生产者,其对抗生素较为敏感,目前有关喹诺酮类抗生素(quinolones, QNs)与底栖藻类群落的相关性研究较为缺乏,因此本研究选取白洋淀为研究区,利用超高效液相色谱串联质谱法(HPLC-MS/MS)检测水体QNs浓度,并分析底栖藻类群落结构和功能指标,利用商值法(RQ)计算QNs的生态风险值,建立QNs生态风险与底栖藻类群落指标的相关性。研究结果如下。(1) 白洋淀QNs浓度存在明显时空差异。就空间分布而言,QNs的最高浓度出现在生境1(1 309.80 ng·L-1);就时间变化而言,4月QNs浓度最高;就QNs种类而言,氟甲喹(flumequine, FLU)浓度最高(1 054.38 ng·L-1);(2) 就藻类群落指标的空间分布而言,除藻密度(AD)、叶绿素a(Chl a)、叶绿素b(Chl b)、叶绿素b/a(Chl b/a)、绿藻比例(CHL)、蓝藻比例(CYA)、碱性磷酸酶(APA)、β-葡萄糖苷酶(GLU)、亮氨酸氨基肽酶(LEU)和无灰干重(AFDW)等指标最大值出现在生境2外,其他指标最大值出现在生境3;就时间分布而言,大部分底栖藻类群落指标11月值高于4月和8月;(3) 除FLU的生态风险处于中等水平外,其余QNs生态风险较低;其中,8月生境2的生态风险值最高(RQ最大值为0.9446);(4) AD、Chl a、Chl b、叶绿素c(Chl c)、Chl b/a与RQCIP和RQFLU呈显著相关,其中Chl a与RQFLU的相关性显著(r = 0.827,P<0.01)。结果表明,底栖藻类结构指标与QNs风险值相关性较为显著,因此,可考虑筛选较为敏感的底栖藻类群落结构指标,为富营养化湖泊生态监测方法研究提供理论基础及相关数据支撑。
关键词: 喹诺酮类/
底栖藻类/
生态风险/
结构和功能指标/
白洋淀
Abstract:Periphyton, the main producer in lakes, are sensitive to antibiotics. At present, the correlation between quinolones (QNs) and periphyton is relatively scarce. Therefore, Baiyangdian Lake was selected as the research area, and the concentration of QNs in water was detected by HPLC-MS/MS. The structure and function indicators of periphyton were analyzed, and the ecological risk values of QNs were calculated by entropy method (based on risk quotient, abbreviated to RQ). Finally, the correlation between ecological risk of QNs and periphyton community indexes was established. The results showed as follows. (1) There were obvious spatial and temporal differences in QNs concentrations in Baiyangdian Lake. In terms of spatial distribution, the highest concentration of QNs appeared in Habitat 1 (1 309.80 ng·L-1); for the aspect of seasonal variation, the highest concentration of QNs was in April; in terms of QNs type, the highest concentration of antibiotics was flumequine (FLU) (1 054.38 ng·L-1); (2) in terms of spatial distribution, except the values of algal density (AD), chlorophyll a (Chl a), chlorophyll b (Chl b), chlorophyll b/a (Chl b/a), the proportion of chlorophyta (CHL), the proportion of cyanophyta (CYA), alkaline phosphatase (APA), β-glucose glycosidase (GLU), leucine amino peptide enzymes (LEU) and ash-free dry weight (AFDW) were highest in Habitat 2, others were highest in Habitat 3. For the aspect of seasonal variation, most periphyton indicators in November were higher than those in April and August; (3) the value of ecological risks of FLU was the highest; the value of ecological risk was highest in habitat 2 in August (RQmax=0.9446). (4) AD, Chl a, Chl b, chlorophyll c (Chl c), Chl b/a were correlated with RQCIP and RQFLU, in which the correlation between Chl a and RQFLU was significant (r = 0.827, P<0.01). The results showed that the correlation between periphyton community indexes and ecological risk value of QNs were significant. Therefore, more sensitive periphyton community indexes could be selected to support the study of ecological monitoring methods of eutrophic lakes.
Key words:quinolone/
periphyton/
ecological risk/
structural and functional metrics/
Baiyangdian Lake.
Kümmerer K. Antibiotics in the aquatic environment-A review-Part Ι[J]. Chemosphere, 2009, 75(4):417-434 |
Wu W, Zhao X H, Liu X, et al. The review of antibiotics in the global water environment[C]. Hangzhou:International Conference on Multimedia Technology, 2011:4205-4208 |
Nödler K, Licha T, Barbieri M, et al. Evidence for the microbially mediated abiotic formation of reversible and non-reversible sulfamethoxazole transformation products during denitrification[J]. Water Research, 2012, 46(7):2131-2139 |
Chung H S, Lee Y J, Rahman M M, et al. Uptake of the veterinary antibiotics chlortetracycline, enrofloxacin, and sulphathiazole from soil by radish[J]. Science of the Total Environment, 2017, 605-606:322-331 |
Chen W, Geng Y, Hong J L, et al. Life cycle assessment of antibiotic mycelial residues management in China[J]. Renewable & Sustainable Energy Reviews, 2017, 79:830-838 |
Zhang C H, Tang J W, Wang L L, et al. Occurrence of antibiotics in water and sediment from Zizhuyuan Lake[J]. Polish Journal of Environmental Studies, 2015, 24(4):1831-1836 |
Carvalho I T, Santos L. Antibiotics in the aquatic environments:A review of the European scenario[J]. Environment International, 2016, 94:736-757 |
Xu J, Xu Y, Wang H, et al. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river[J]. Chemosphere, 2015, 119:1379-1385 |
毕田田,赵海燕,张双灵.氧氟沙星、乳酸诺氟沙星和恩诺沙星对金鱼的急性毒性试验研究[J].农产品加工, 2015(8):31-33, 37Bi T T, Zhao H Y, Zhang S L. Acute toxicity experience to goldfish of ofloxacin, norfloxacin lactate and enrofloxacin[J]. Farm Products Processing, 2015(8):31-33, 37(in Chinese) |
甘秀梅,严清,高旭,等.典型抗生素在中国西南地区某污水处理厂中的行为和归趋[J].环境科学, 2014, 35(5):1817-1823Gan X M, Yan Q, Gao X, et al.Occurrence and fate of typical antibiotics in a wastewater treatment plant in Southwest China[J]. Environmental Science, 2014, 35(5):1817-1823(in Chinese) |
Yang S F, Lin C F, Lin Y C, et al. Sorption and biodegradation of sulfonamide antibiotics by activated sludge:Experimental assessment using batch data obtained under aerobic conditions[J]. Water Research, 2011, 45(11):3389-3397 |
张国栋.南四湖流域典型抗生素时空分布及迁移规律研究[D].济南:山东师范大学, 2019:21-26 Zhang G D. Spatial and temporal distribution and migration of typical antibiotics in Nansihu Lake Basin[D]. Jinan:Shandong Normal University, 2019:21-26(in Chinese) |
陆大培.长江口及邻近海域沉积物中抗生素抗性基因时空分布特征及其与环境因子相关性研究[D].上海:华东师范大学, 2019:67-69 Lu D P. Temporal and spatial distribution characteristics of antibiotic resistance genes and their correlation with environmental factors in sediments from the Yangtze Estuary and adjacent coastal area[D]. Shanghai:East China Normal University, 2019:67-69(in Chinese) |
童帮会.淀山湖典型抗生素污染特征、来源及风险评价[D].上海:华东师范大学, 2019:46-62 Tong B H. Pollution characteristics, sources and risk assessment of typical antibiotics in Dianshan Lake of Shanghai[D]. Shanghai:East China Normal University, 2019:46-62(in Chinese) |
刘珂.胶州湾典型海岸带沉积物中喹诺酮抗生素时空分布特征及风险评价[D].青岛:青岛大学, 2018:23-34 Liu K. Spatial, temporal distribution and risk assessment of quinolone antibiotics in the surface sediments of typical coastal zone, Jiaozhou Bay[D]. Qingdao:Qingdao University, 2018:23-34(in Chinese) |
孙秋根,王智源,董建玮,等.太湖流域河网4种典型抗生素的时空分布和风险评价[J].环境科学学报, 2018, 38(11):4400-4410Sun Q G, Wang Z Y, Dong J W, et al. Spatial-temporal distribution and risk evaluation of four typical antibiotics in river networks of Taihu Lake Basin[J]. Acta Scientiae Circumstantiae, 2018, 38(11):4400-4410(in Chinese) |
崔晓波,曲文彦,高文秀.水体抗生素污染现状及藻类生态风险评价[J].山西农业科学, 2017, 45(12):2056-2062Cui X B, Qu W Y, Gao W X. Pollution status of antibiotic in water and ecological risk assessment of algae[J].Journal of Shanxi Agricultural Sciences, 2017, 45(12):2056-2062(in Chinese) |
陈辉.海陵湾海域抗生素的污染特征及藻类响应机制[D].北京:中国科学院大学, 2016:43-44 Chen H. Occurrence of antibiotics in Hailing Bay Region and mechanism on algae responses to antibiotic stress[J]. Beijing:University of Chinese Academy of Sciences, 2016:43-44(in Chinese) |
朱琳,张远,渠晓东,等.北京清河水体及水生生物体内抗生素污染特征[J].环境科学研究, 2014, 27(2):139-146Zhu L, Zhang Y, Qu X D, et al. Occurrence of antibiotics in aquatic plants and organisms from Qing River, Beijing[J]. Research of Environmental Sciences, 2014, 27(2):139-146(in Chinese) |
Zhao S N, Liu X H, Cheng D M, et al. Temporal-spatial variation and partitioning prediction of antibiotics in surface water and sediments from the intertidal zones of the Yellow River Delta, China[J]. Science of the Total Environment, 2016, 569-570:1350-1358 |
Cheng D M, Liu X H, Zhao S N, et al. Influence of the natural colloids on the multi-phase distributions of antibiotics in the surface water from the largest lake in North China[J]. Science of the Total Environment, 2017, 578:649-659 |
Yao L L, Wang Y X, Tong L, et al. Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers:A case study at Jianghan Plain, central China[J]. Ecotoxicology and Environmental Safety, 2017, 135:236-242 |
Zhang R J, Zhang G, Tang J H, et al. Levels, spatial distribution and sources of selected antibiotics in the East River (Dongjiang), South China[J]. Aquatic Ecosystem Health & Management, 2012, 15(2):210-218 |
Liu K, Yin X F, Zhang D L, et al. Distribution, sources, and ecological risk assessment of quinotone antibiotics in the surface sediments from Jiaozhou Bay wetland, China[J]. Marine Pollution Bulletin, 2018, 129(2):859-865 |
Yang J M, Gao Y X, Wang L. Grey correlative analysis of logistics industry and pharmaceutical industry in Hebei Province[C]. Shanghai:International Conference on Business Computing and Global Informatization (BCGIN), 2012 |
刘超颖,李桂.河北省医药制造业竞争力分析比较[J].河北企业, 2018(9):105-106 |
徐嘉男.水环境中抗生素污染的研究进展[J].环境科学与管理, 2017, 42(12):23-26Xu J N. Research of antibiotic pollution in water environment[J]. Environmental Science and Management, 2017, 42(12):23-26(in Chinese) |
殷强,付峥嵘.我国水环境中抗生素污染的研究进展[J].安徽农业科学, 2017, 45(31):50-51, 55 Yin Q, Fu Z R. Research progress of antibiotic pollution in water environment in China[J].Journal of Anhui Agricultural Sciences, 2017, 45(31):50-51, 55(in Chinese) |
高秋生,焦立新,杨柳,等.白洋淀典型持久性有机污染物污染特征与风险评估[J].环境科学, 2018, 39(4):1616-1627Gao Q S, Jiao L X, Yang L, et al. Occurrence and ecological risk assessment of typical persistent organic pollutants in Baiyangdian Lake[J]. Environmental Science, 2018, 39(4):1616-1627(in Chinese) |
高秋生,赵永辉,焦立新,等.白洋淀水体挥发性有机物污染特征与风险评价[J].环境科学, 2018, 39(5):2048-2055Gao Q S, Zhao Y H, Jiao L X, et al. Pollution characteristics and health risk assessment of volatile organic compounds in Baiyangdian Lake[J]. Environmental Science, 2018, 39(5):2048-2055(in Chinese) |
邱鹏,刘芃岩,王晓冰,等.白洋淀入湖河流水体中多溴联苯醚的浓度分布特征[J].环境污染与防治, 2019, 41(1):81-84, 88 Qiu P, Liu F Y, Wang X B, et al. Concentration distribution characteristics of polybrominated diphenyl ethers in the water flows into Baiyangdian Lake[J]. Environmental Pollution and Control, 2019, 41(1):81-84, 88(in Chinese) |
厉文辉.抗生素分析方法及其典型区域污染特征研究[D].北京:中国科学院研究生院, 2013:93-96 Li W H.Analytical methods for antibiotics and their occurrence in typical areas of China[D]. Beijing:Graduate School of Chinese Academy of Sciences, 2013:93-96(in Chinese) |
González-Pleiter M, Gonzalo S, Rodea-Palomares I, et al. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms:Implications for environmental risk assessment[J]. Water Research, 2013, 47(6):2050-2064 |
杨俊,王汉欣,吴韵斐,等.苏州市水环境中典型抗生素污染特征及生态风险评估[J].生态环境学报, 2019, 28(2):359-368Yang J, Wang H X, Wu Y F, et al. Occurrence, distribution and risk assessment of typical antibiotics in the aquatic environment of Suzhou City[J]. Ecology and Environment Sciences, 2019, 28(2):359-368(in Chinese) |
国家环境保护总局.水和废水监测分析方法(第四版)[S].北京:中国环境科学出版社, 2002 |
Li W H, Shi Y L, Gao L H, et al. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China[J]. Chemosphere, 2012, 89(11):1307-1315 |
Lombardo A, Franco A, Pivato A, et al. Food web modeling of a river ecosystem for risk assessment of down-thedrain chemicals:A case study with AQUATOX[J]. Science of the Total Environment, 2015, 508:214-227 |
Ma M Y, Liu J L, Wang X M. Biofilms as potential indicators of macrophyte-dominated lake health[J]. Ecotoxicology, 2011, 20(5):982-992 |
黄亮,李伟,吴莹,等.长江中游若干湖泊中水生植物体内重金属分布[J].环境科学研究, 2002, 15(6):1-4Huang L, Li W, Wu Y, et al. Distribution of heavy metals in aquatic plants of some lakes in the middle reach of the Yangtze River[J]. Research of Environmental Sciences, 2002, 15(6):1-4(in Chinese) |
Findlay S, Sinsabaugh R L. Large-scale variation in subsurface stream biofilms:A cross-regional comparison of metabolic function and community similarity[J]. Microbial Ecology, 2006, 52(3):491-500 |
Fellows C S, Clapcott J E, Udy J W, et al. Benthic metabolism as an indicator of stream ecosystem health[J]. Hydrobiologia, 2006, 572(1):71-87 |
European Commission. Technical guidance document on risk assessment in support of commission Directive 93/67/EEC on risk assessment for new notified substances[R]. Ispra:European Commission, 2003 |
Zhang L L, Liu J L, Liu H Y, et al. The occurrence and ecological risk assessment of phthalate esters (PAEs) in urban aquatic environments of China[J]. Ecotoxicology, 2015, 24(5):1-18 |
U.S. Environmental Protection Agency. Ecological Structure Activity Relationships (ECOSAR) Predictive Model[DB/OL].[2019-08-03]. https://www.epa.gov/ |
Hernando M D, Mezcua M, Fernández-Alba A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[J]. Talanta, 2006, 69(2):334-342 |
Braak T, Smiauer P. CANOCO reference manual and user's guide to Canoco for Windows:Software for canonical community ordination (version 4)[R]. Ithaca:Sceintific Research, 1998 |
裴国凤,刘国祥.长江中游湖泊沿岸带的底栖藻类群落结构特征[J].湖泊科学, 2011, 23(2):239-245Pei G F, Liu G X. Community structure characters of benthic algae community on littoral zone of the lakes in the middle reaches of Yangtze River[J]. Journal of Lake Sciences, 2011, 23(2):239-245(in Chinese) |
Ginebreda A, Muñoz I, de Alda M L, et al. Environmental risk assessment of pharmaceuticals in rivers:Relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain)[J]. Environment International, 2010, 36(2):153-162 |
Žižek S, Milač ič R, Kovač N, et al. Periphyton as a bioindicator of mercury pollution in a temperate torrential river ecosystem[J]. Chemosphere, 2011, 85(5):883-891 |
Quinlan E L, Nietch C T, Blocksom K, et al. Temporal dynamics of periphyton exposed to tetracycline in stream mesocosms[J]. Environmental Science & Technology, 2011, 45(24):10684-10690 |
张晓晗,万甜,程文,等.喹诺酮类和磺胺类抗生素对绿藻生长的影响[J].水资源与水工程学报, 2018, 29(4):115-120Zhang X H, Wan T, Cheng W, et al. Effects of quinolones and sulfonamides on the growth of green algae[J]. Journal of Water Resources and Water Engineering, 2018, 29(4):115-120(in Chinese) |
王美仙.淡水微藻对水体颗粒物与抗生素及其复合污染胁迫的响应研究[D].厦门:华侨大学, 2017:26-39, 45-71Wang M X. Study the response of freshwater microalgae to suspended water particals, antibiotics and combined stress[D]. Xiamen:Huaqiao University, 2017:26-39, 45-71(in Chinese) |
张彦慧,张文慧,姜智飞,等. 5种抗生素对纤细裸藻蛋白含量的影响[J].河北渔业, 2017(8):13-17 Zhang Y H, Zhang W H, Jiang Z F, et al. Response of protein levels of Euglena gracilis to five kinds of antibiotic stress[J]. Hebei Fisheries, 2017(8):13-17(in Chinese) |
Teixeira J R, Granek E F. Effects of environmentally-relevant antibiotic mixtures on marine microalgal growth[J]. Science of the Total Environment, 2017, 580:43-49 |
Fu L, Huang T, Wang S, et al. Toxicity of 13 different antibiotics towards freshwater green algae Pseudokirchneriella subcapitata and their modes of action[J]. Chemosphere, 2017, 168:217-222 |
Winkworth C L, Salis R K, Matthaei C D. Interactive multiple-stressor effects of the antibiotic monensin, cattle effluent and light on stream periphyton[J]. Freshwater Biology, 2015, 60(11):2410-2423 |