郭昌胜1,
刘淼2,
李专3,
徐建1
1. 中国环境科学研究院, 环境健康风险评估与研究中心, 北京 100012;
2. 吉林大学新能源与环境学院, 长春 130012;
3. 吉林省环境监测中心站, 长春 130011
作者简介: 陈力可(1984-),男,博士,研究方向为环境化学,E-mail:Downeychen@163.com.
基金项目: 国家自然科学基金资助项目(51208482)中图分类号: X171.5
The Cytotoxic Effects of Magnetite Nanoparticle-Pb2+ Complex on Rat Kidney Cells
Chen Like1,Guo Changsheng1,
Liu Miao2,
Li Zhuan3,
Xu Jian1
1. Center of Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
2. College of New Energy and Environment, Jilin University, Changchun 130012, China;
3. Environmental Monitoring Center of Jilin Province, Changchun 130011, China
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:磁铁矿纳米颗粒(magnetite nanoparticles, MNPs)是一种环境友好型吸附剂,广泛应用于废水中Pb2+的处理。目前,有不少关于MNPs毒性的研究,但对MNPs处理Pb2+形成的复合物的毒性却鲜有报道,其复合毒性亟待深入研究。本文以大鼠肾细胞(NRK)作为细胞模型,系统研究不同Pb含量的MNPs-Pb复合物,以及相应浓度的MNPs和Pb2+,对大鼠肾细胞活性、细胞形态和密度的影响,考察细胞对纳米颗粒的摄取以及细胞凋亡的作用机制,评估MNPs-Pb的毒性效应。结果表明,在本实验浓度和暴露时间(12 h)条件下,Pb2+能够显著抑制细胞活性,改变细胞形态,促进细胞凋亡,对细胞有显著的毒性效应,并且呈现剂量相关性;利用MNPs吸附水环境中Pb2+形成的复合物MNPs-Pb对大鼠肾细胞没有显著的毒性作用(P<0.05),MNPs对Pb2+的吸附可能是Pb2+的细胞毒性降低的原因。
关键词: MNPs/
Pb2+/
复合物/
大鼠肾细胞/
细胞毒性/
细胞凋亡/
复合污染
Abstract:Magnetite nanoparticles (MNPs) are environment-friendly adsorbents, which are widely used in the treatment of Pb2+ in wastewater. Recently, significant research efforts have been made toward the investigation of MNPs toxicity, whereas very little attention has been paid to the complex of MNPs and Pb2+ (MNPs-Pb). To evaluate the potential cytotoxic effect of MNPs-Pb, rat kidney cells (NRK) were used as model cell to study the cellular internalization of MNPs-Pb and the cytotoxic effects of both MNPs-Pb and Pb2+, including cell viability, cell morphology and density, and apoptosis. It was found that under the experimental concentrations and conditions, Pb2+ could significantly inhibit cell activity, change cell morphology and promote cell apoptosis, thus displaying dose-dependent toxic effects on cells. Compared with the corresponding concentration of Pb2+, the toxicity of MNPs-Pb complex on rat kidney cells was significantly reduced. There was no significant toxic effect of MNPs-Pb on rat kidney cells.
Key words:magnetite nanoparticles/
lead/
complex/
rat kidney cells/
cytotoxicity/
apoptosis/
multiple contamination.
Liu B Y, Zhang H L, Tan X, et al. GSPE reduces lead-induced oxidative stress by activating the Nrf2 pathway and suppressing miR153 and GSK-3 beta in rat kidney[J]. Oncotarget, 2017, 8(26):42226-42237 |
张晴,张斌,赵静,等.环境相关浓度铅暴露诱导斑马鱼仔鱼神经行为毒性[J].环境化学, 2018, 37(3):445-452Zhang Q, Zhang B, Zhao J, et al. Neurobehavioral toxicity of zebrafish larvae caused by lead exposure at environmentally relevant concentrations[J]. Environmental Chemistry, 2018, 37(3):445-452(in Chinese) |
Gidlow D A. Lead toxicity[J]. Occupational Medicine, 2015, 65(5):348-356 |
Lopes A C, Peixe T S, Mesas A E, et al. Lead exposure and oxidative stress:A systematic review[J]. Reviews of Environmental Contamination and Toxicology, 2016, 236:193-238 |
Jiang B, Lian L N, Xing Y, et al. Advances of magnetic nanoparticles in environmental application:Environmental remediation and (bio) sensors as case studies[J]. Environmental Science and Pollution Research, 2018, 25(31):30863-30879 |
Fayazi M. Facile hydrothermal synthesis of magnetic sepiolite clay for removal of Pb (Ⅱ) from aqueous solutions[J]. Analytical and Bioanalytical Chemistry Research, 2019, 6(1):125-136 |
何勇田,熊先哲.复合污染研究进展[J].环境科学, 1994, 15(6):79-83He Y T, Xiong X Z. Advance in the study on compounded pollutions[J]. Environmental Science, 1994, 15(6):79-83(in Chinese) |
杜佳,王树涛,刘征,等.全氟辛烷磺酸钾(PFOS)和纳米氧化锌(Nano-ZnO)单独与联合暴露对斑马鱼胚胎的氧化损伤和细胞凋亡的影响[J].生态毒理学报, 2015, 10(3):238-247Du J, Wang S T, Liu Z, et al. PFOS and ZnO nanoparticles induced oxidative stress and apoptosis in zebrafish (Danio rerio)[J]. Asian Journal of Ecotoxicology, 2015, 10(3):238-247(in Chinese) |
姜文博,刘诣,朱越,等.纳米二氧化钛对小鼠心肌细胞DNA的损伤及叔丁基对苯二酚的拮抗作用[J].复旦学报:医学版, 2015, 42(3):349-354Jiang W B, Liu Y, Zhu Y, et al. Nanoparticulate titanium dioxide induce DNA damage of cadiac myocytes in mice and the antagonistic effects of tert-butylhydroquinone[J]. Fudan University Journal of Medical Sciences, 2015, 42(3):349-354(in Chinese) |
官晨雨,侯世达,周洋,等.磁性四氧化三铁纳米颗粒作用于前成骨细胞的生物相容性[J].中国组织工程研究, 2016, 20(38):5684-5690Guan C Y, Hou S D, Zhou Y, et al. Biocompatibility of magnetic ferrosoferric oxide nanoparticles in preosteoblasts[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(38):5684-5690(in Chinese) |
Nassar N N. Rapid removal and recovery of Pb (Ⅱ) from wastewater by magnetic nanoadsorbents[J]. Journal of Hazardous Materials, 2010, 184(1):538-546 |
Almeida L M, Magno L N, Pereira A C, et al. Toxicity of silver nanoparticles released by Hancornia speciosa (Mangabeira) biomembrane[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2019, 210:329-334 |
Delaval M, Wohlleben W, Landsiedel R, et al. Assessment of the oxidative potential of nanoparticles by the cytochrome c assay:Assay improvement and development of a high-throughput method to predict the toxicity of nanoparticles[J]. Archives of Toxicology, 2017, 91(1):163-177 |
Dong C D, Tsai M L, Chen C W, et al. Heterogeneous persulfate oxidation of BTEX and MTBE using Fe3O4-CB magnetite composites and the cytotoxicity of degradation products[J]. International Biodeterioration & Biodegradation, 2017, 124:109-118 |
Baginskiy I, Lai T C, Cheng L C, et al. Chitosan-modified stable colloidal gold nanostars for the photothermolysis of cancer cells[J]. Journal of Physical Chemistry C, 2013, 117(5):2396-2410 |
王青,杨丽燕,刘剑波,等.动态光散射技术用于氟离子的检测[J].高等学校化学学报, 2012, 33(10):2195-2198Wang Q, Yang L Y, Liu J B, et al. Dynamic light scattering for fluoride ions detection[J]. Chemical Journal of Chinese Universities, 2012, 33(10):2195-2198(in Chinese) |
Nemethova V, Buliakova B, Mazancova P, et al. Intracellular uptake of magnetite nanoparticles:A focus on physico-chemical characterization and interpretation of in vitro data[J]. Materials Science and Engineering C, 2017, 70:161-168 |
Oh N, Park J H. Endocytosis and exocytosis of nanoparticles in mammalian cells[J]. International Journal of Nanomedicine, 2014, 9:51-63 |
李专,刘淼,陈明辉,等.纳米四氧化三铁吸附水中六价铬后的复合物对HEK293细胞的毒性研究[J].生态毒理学报, 2018, 13(5):296-304Li Z, Liu M, Chen M H, et al. Toxicity of composite of Cr (Ⅵ) adsorbed by magnetite Fe3O4 nanoparticles on HEK293[J]. Asian Journal of Ecotoxicology, 2018, 13(5):296-304(in Chinese) |
Hildebrand H, Kühnel D, Potthoff A, et al. Evaluating the cytotoxicity of palladium magnetite nano-catalysts intended for wastewater treatment[J]. Environmental Pollution, 2010, 158(1):65-73 |
Auffan M, Rose J, Proux O, et al. Is there a Trojan-horse effect during magnetic nanoparticles and metalloid cocontamination of human dermal fibroblasts[J]. Environmental Science and Technology, 2012, 46(19):10789-10796 |
Tian F, Chen G, Yi P, et al. Fates of Fe3O4 and Fe3O4@SiO 2 nanoparticles in human mesenchymal stem cells assessed by synchrotron radiation-based techniques[J]. Biomaterials, 2014, 35(24):6412-6421 |
Stacchiotti A, Morandini F, Bettoni F, et al. Stress proteins and oxidative damage in a renal derived cell line exposed to inorganic mercury and lead[J]. Toxicology, 2009, 264(3):215-224 |
初炳鑫.凋亡与自噬在铅致大鼠肾小管上皮细胞毒性中的交互作用[D].济南:山东农业大学, 2018:2-4 Chu B X. Interplay between autophagy and apoptosis in lead (Ⅱ)-induced cytotoxicity of primary rat proximal tubular cells[D]. Jinan:Shandong Agricultural University, 2018:2-4(in Chinese) |
李丹.没食子酸修饰金、银纳米颗粒的细胞毒性研究[D].长春:吉林大学, 2015:48-49 Li D. Study on the cytotoxicity of gold and silver nanoparticles modified by gallic acid[D]. Changchun:Jilin University, 2015:48-49(in Chinese) |
Song S, Tan J, Miao Y, et al. Crosstalk of autophagy and apoptosis:Involvement of the dual role of autophagy under ER stress[J]. Journal of Cellular Physiology, 2017, 232(11):2977-2984 |
Nanayakkara S, Senevirathna S T M L D, Karunaratne U, et al. Evidence of tubular damage in the very early stage of chronic kidney disease of uncertain etiology in the North Central Province of Sri Lanka:A cross-sectional study[J]. Environmental Health and Preventive Medicine, 2012, 17(2):109-117 |
Babatunji O, Abiola A, Abidemi K, et al. Reactive oxygen species, apoptosis, antimicrobial peptides and human inflammatory diseases[J]. Pharmaceuticals, 2015, 8(2):151-175 |