王东红2,,,
王子健3
1. 中国矿业大学(北京) 化学与环境工程学院, 北京 100083;
2. 中国科学院生态环境研究中心 中国科学院饮用水科学与技术重点实验室, 北京 100085;
3. 中国科学院生态环境研究中心 环境水质学国家重点实验室, 北京 100085
作者简介: 卜庆伟(1983-),男,博士,研究方向为水生态毒理学及生态风险评价,E-mail:qingwei.bu@cumtb.edu.cn.
通讯作者: 王东红,dhwang@rcees.ac.cn ;
基金项目: 国家自然科学基金青年基金(21307068);国家自然科学基金(51290283);国家高技术研究发展计划(863计划)(2014AA06A506)中图分类号: X171.5
A Risk-based Screening Approach for Priority Organic Contaminants at the Watershed Scale: Method Development
Bu Qingwei1,3,Wang Donghong2,,,
Wang Zijian3
1. School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China;
2. Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
3. State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Corresponding author: Wang Donghong,dhwang@rcees.ac.cn ;
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:化学品的大量使用和排放进入水环境,对水生态系统产生诸多不利影响。因此,流域环境管理的重点之一就是如何筛查具有潜在风险的优先污染物。对于流域环境介质中污染物筛查而言,难点和关键是如何建立高效的分析方法来尽可能多的获取环境介质中的污染物信息,进而对其危害及风险水平进行判断与筛查。对在流域环境介质中污染物筛查方面具有潜在应用可能性的环境分析方法进行了综述,提出了以高通量分析方法为基础的基于概率风险分析的流域优先有机污染物筛查方法体系,并对体系中涉及的筛查基准、数据选择等关键问题进行了讨论。
关键词: 高通量分析方法/
流域优先污染物/
概率风险/
筛查基准/
物种敏感度分布
Abstract:Massive chemical substances enter the aquatic environment due to their wide uses and emissions, causing adverse effects on the aquatic ecology. Thus the key issue of watershed management is to identify organic pollutants with potential risks. For the environmental matrix, the challenge lies in how to develop a high throughout screening method to gain a picture of the organic pollutants. In the present study, we reviewed the possible method that can be used in the screening analysis, and put forward a risk-based screening system that incorporated the high throughout analytical method. Setting of screening benchmark and selection procedure of data were also discussed.
Key words:high throughout analytical method/
priority pollutants/
probability risk/
screening benchmark/
species sensitivity distribution.