![](http://journal.psych.ac.cn/xlxb/images/email.png)
安徽医科大学医学心理学系, 合肥 230000
收稿日期:
2017-05-29出版日期:
2018-06-01发布日期:
2018-04-28通讯作者:
汪凯E-mail:wangkai1964@126.com基金资助:
省高校自然科学研究重点项目(KJ2016A355);安徽医科大学博士科研基金(XJ201521);国家自然科学基金面上项目(31771222);国家自然科学基金面上项目(31571149);国家自然科学基金面上项目(81771456);基金委重大研究计划集成项目资助(91432301)Excitation of the right dorsolateral prefrontal cortex with transcranial direct current stimulation influences response inhibition
WANG Hui Hui, LUO Yu Dan, SHI Bing, YU Feng Qiong, WANG Kai(![](http://journal.psych.ac.cn/xlxb/images/email.png)
Department of Medical Psychology, Anhui Medical University, Hefei 230000, China
Received:
2017-05-29Online:
2018-06-01Published:
2018-04-28Contact:
WANG Kai E-mail:wangkai1964@126.com摘要/Abstract
摘要: 拟观察经颅直流电刺激作用于右侧背外侧前额叶皮层前后, 被试在停止信号任务中的行为变化。实验共入组34名正常大学生, 被试前后两次随机接受真刺激和伪刺激, 两次刺激间隔7天, 每个被试在接受刺激前后均完成停止信号任务, 并在每次实验前后完成Stroop色词任务、词语流畅性、数字广度任务。结果发现真刺激作用于右侧背外侧前额叶皮层后停止信号反应时显著减小, 但伪刺激条件下没有该趋势。本实验证明了作用于右侧背外侧前额叶皮层的经颅直流电刺激可以调节反应抑制能力, 右侧背外侧前额叶皮层是反应抑制的重要脑区。
图/表 7
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2018-50-6/Images/0439-755X-50-6-647/img_1.png)
图1电极片放置位置
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2018-50-6/Images/0439-755X-50-6-647/img_1.png)
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2018-50-6/Images/0439-755X-50-6-647/img_2.png)
图2停止信号任务流程图注:彩图见电子版
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2018-50-6/Images/0439-755X-50-6-647/img_2.png)
表1真伪刺激前后神经心理学测验结果比较
组别 | M ± SD | t值 | p值 |
---|---|---|---|
真刺激前stroop效应量 | 6.79 ± 4.58 | 0.49 | 0.628 |
伪刺激前stroop效应量 | 7.32 ± 4.67 | ||
真刺激前后stroop效应量 | -0.99 ± 4.52 | -1.28 | 0.209 |
伪刺激前后stroop效应量 | -1.36 ± 4.09 | -1.93 | 0.062 |
真刺激前数字广度(顺背) | 7.94 ± 0.24 | 1.44 | 0.160 |
伪刺激前数字广度(顺背) | 8.00 ± 0.00 | ||
真刺激前后数字广度(顺背) | 0.03 ± 1.17 | 1.00 | 0.325 |
伪刺激前后数字广度(顺背) | 0.00 ± 0.00 | ||
真刺激前数字广度(倒背) | 6.06 ± 0.95 | -0.73 | 0.473 |
伪刺激前数字广度(倒背) | 5.94 ± 0.95 | ||
真刺激前后数字广度(倒背) | 0.21 ± 0.54 | 2.23 | 0.033 |
伪刺激前后数字广度(倒背) | 0.44 ± 0.70 | 3.65 | 0.001 |
真刺激前词语流畅性 | 27.26 ± 5.46 | -0.49 | 0.625 |
伪刺激前词语流畅性 | 26.79 ± 4.93 | ||
真刺激前后词语流畅性 | 3.38 ± 4.06 | 4.86 | 0.000 |
伪刺激前后词语流畅性 | 4.47 ± 4.53 | 5.75 | 0.000 |
表1真伪刺激前后神经心理学测验结果比较
组别 | M ± SD | t值 | p值 |
---|---|---|---|
真刺激前stroop效应量 | 6.79 ± 4.58 | 0.49 | 0.628 |
伪刺激前stroop效应量 | 7.32 ± 4.67 | ||
真刺激前后stroop效应量 | -0.99 ± 4.52 | -1.28 | 0.209 |
伪刺激前后stroop效应量 | -1.36 ± 4.09 | -1.93 | 0.062 |
真刺激前数字广度(顺背) | 7.94 ± 0.24 | 1.44 | 0.160 |
伪刺激前数字广度(顺背) | 8.00 ± 0.00 | ||
真刺激前后数字广度(顺背) | 0.03 ± 1.17 | 1.00 | 0.325 |
伪刺激前后数字广度(顺背) | 0.00 ± 0.00 | ||
真刺激前数字广度(倒背) | 6.06 ± 0.95 | -0.73 | 0.473 |
伪刺激前数字广度(倒背) | 5.94 ± 0.95 | ||
真刺激前后数字广度(倒背) | 0.21 ± 0.54 | 2.23 | 0.033 |
伪刺激前后数字广度(倒背) | 0.44 ± 0.70 | 3.65 | 0.001 |
真刺激前词语流畅性 | 27.26 ± 5.46 | -0.49 | 0.625 |
伪刺激前词语流畅性 | 26.79 ± 4.93 | ||
真刺激前后词语流畅性 | 3.38 ± 4.06 | 4.86 | 0.000 |
伪刺激前后词语流畅性 | 4.47 ± 4.53 | 5.75 | 0.000 |
表2刺激前后SSRT差异比较
组别 | M ± SD | t值 | p值 |
---|---|---|---|
真刺激前SSRT | 306.70 ± 44.78 | -2.25 | 0.031 |
真刺激后SSRT | 290.82 ± 40.97 | ||
伪刺激前SSRT | 291.57 ± 33.21 | 1.99 | 0.055 |
伪刺激后SSRT | 302.13 ± 40.50 |
表2刺激前后SSRT差异比较
组别 | M ± SD | t值 | p值 |
---|---|---|---|
真刺激前SSRT | 306.70 ± 44.78 | -2.25 | 0.031 |
真刺激后SSRT | 290.82 ± 40.97 | ||
伪刺激前SSRT | 291.57 ± 33.21 | 1.99 | 0.055 |
伪刺激后SSRT | 302.13 ± 40.50 |
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2018-50-6/Images/0439-755X-50-6-647/img_3.png)
图3刺激前后SSRT值
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2018-50-6/Images/0439-755X-50-6-647/img_3.png)
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2018-50-6/Images/0439-755X-50-6-647/img_4.png)
图4真刺激和伪刺激前后SSRT值
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2018-50-6/Images/0439-755X-50-6-647/img_4.png)
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2018-50-6/Images/0439-755X-50-6-647/img_5.png)
图5真刺激前后男女SSRT值
![](http://journal.psych.ac.cn/xlxb/fileup/0439-755X/FIGURE/2018-50-6/Images/0439-755X-50-6-647/img_5.png)
参考文献 33
[1] | Andrés, P. ( 2003). Frontal cortex as the central executive of working memory: Time to revise our view. Cortex, 39(4-5), 871-895. doi: 10.1016/S0010-9452(08)70868-2URLpmid: 14584557 |
[2] | Asahi S., Okamoto Y., Okada G., Yamawaki S., & Yokota N . ( 2004). Negative correlation between right prefrontal activity during response inhibition and impulsiveness: A fMRI study. European Archives of Psychiatry and Clinical Neuroscience, 254(4), 245-251. doi: 10.1007/s00406-004-0488-zURLpmid: 15309395 |
[3] | Bari A., & Robbins T. W . ( 2013). Inhibition and impulsivity: Behavioral and neural basis of response control. Progress in Neurobiology, 108, 44-79. doi: 10.1016/j.pneurobio.2013.06.005URLpmid: 23856628 |
[4] | Beeli G., Casutt G., Baumgartner T., & J?ncke L . ( 2008). Modulating presence and impulsiveness by external stimulation of the brain. Behavioral and Brain Functions, 4, 33. doi: 10.1186/1744-9081-4-33URLpmid: 18680573 |
[5] | Boggio P. S., Zaghi S., & Fregni F . ( 2009). Modulation of emotions associated with images of human pain using anodal transcranial direct current stimulation (tDCS). Neuropsychologia, 47(1), 212-217. doi: 10.1016/j.neuropsychologia.2008.07.022URLpmid: 18725237 |
[6] | Brevet-Aeby C., Brunelin J., Iceta S., Padovan C., & Poulet E . ( 2016). Prefrontal cortex and impulsivity: Interest of noninvasive brain stimulation. Neuroscience & Biobehavioral Reviews, 71, 112-134. doi: 10.1016/j.neubiorev.2016.08.028URLpmid: 27590833 |
[7] | Casey B. J., Trainor R. J., Orendi J. L., Schubert A. B., Nystrom L. E., & Giedd J. N., … Rapoport J. L . ( 1997). A developmental functional MRI study of prefrontal activation during performance of a Go-No-Go task. Journal of Cognitive Neuroscience, 9(6), 835-847. doi: 10.1162/jocn.1997.9.6.835URLpmid: 23964603 |
[8] | Dambacher F., Schuhmann T., Lobbestael J., Arntz A., Brugman S., & Sack A. T . ( 2015). No effects of bilateral tDCS over inferior frontal gyrus on response inhibition and aggression. PLoS One, 10(7), e0132170. doi: 10.1371/journal.pone.0132170URLpmid: 2005680 |
[9] | Fang J., Zhu Y., Zhao W., Zhang B., & Wang X . ( 2013). Stop signal task and the related models of response inhibiton. Chinese Journal of Clinical Psychology, 21(5), 743-746, 750. |
[ 方菁, 朱叶, 赵伟, 张蓓, 王湘 . ( 2013). 停止信号任务及其相关反应抑制理论模型综述. 中国临床心理学杂志, 21(5), 743-746, 750.] | |
[10] | Horvath J. C., Forte J. D., & Carter O . ( 2015). Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimulation, 8(3), 535-550. doi: 10.1016/j.brs.2015.01.400URLpmid: 25701175 |
[11] | Hughes M. E., Budd T. W., Fulham W. R., Lancaster S., Woods W., Rossell S. L., & Michie P. T . ( 2014). Sustained brain activation supporting stop-signal task performance. European Journal of Neuroscience, 39(8), 1363-1369. doi: 10.1111/ejn.12497URLpmid: 24528168 |
[12] | Hwang J. H., Kim S. H., Park C. S., Bang S. A., & Kim S. E . ( 2010). Acute high-frequency rTMS of the left dorsolateral prefrontal cortex and attentional control in healthy young men. Brain Research, 1329, 152-158. doi: 10.1016/j.brainres.2010.03.013URLpmid: 20226772 |
[13] | Jurcak V., Tsuzuki D., & Dan I . ( 2007). 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head- surface-based positioning systems. NeuroImage, 34(4), 1600-1611. doi: 10.1016/j.neuroimage.2006.09.024URLpmid: 17207640 |
[14] | Konishi S., Nakajima K., Uchida I., Kikyo H., Kameyama M., & Miyashita Y . ( 1999). Common inhibitory mechanism in human inferior prefrontal cortex revealed by event- related functional MRI. Brain, 122(5), 981-991. doi: 10.1093/brain/122.5.981URLpmid: 10355680 |
[15] | Leyman L., De Raedt R., Vanderhasselt M. A., & Baeken C . ( 2009). Influence of high-frequency repetitive transcranial magnetic stimulation over the dorsolateral prefrontal cortex on the inhibition of emotional information in healthy volunteers. Psychological Medicine, 39(6), 1019-1028. doi: 10.1017/S0033291708004431URLpmid: 18834555 |
[16] | Li Y., Wang L., Jia M., Guo J., Wang H., & Wang M . ( 2017). The effects of high-frequency rTMS over the left DLPFC on cognitive control in young healthy participants. PLoS One, 12(6), e0179430. doi: 10.1371/journal.pone.0179430URLpmid: 5470713 |
[17] | Loftus A. M., Yalcin O., Baughman F. D., Vanman E. J., & Hagger M. S . ( 2015). The impact of transcranial direct current stimulation on inhibitory control in young adults. Brain and Behavior, 5(5), e00332. doi: 10.1002/brb3.332URLpmid: 4389055 |
[18] | Logan G. D., & Cowan W. B . ( 1984). On the ability to Inhibit thought and action: A theory of an act of control. Psychoogical Review, 91, 295-327. |
[19] | Menon, V. ( 2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15(10), 483-506. doi: 10.1016/j.tics.2011.08.003URLpmid: 21908230 |
[20] | Meron D., Hedger N., Garner M. G., & Baldwin D. S . ( 2015). Transcranial direct current stimulation (tDCS) in the treatment of depression: Systematic review and meta-analysis of efficacy and tolerability. Neuroscience & Biobehavioral Reviews, 57, 46-62. doi: 10.1016/j.neubiorev.2015.07.012URLpmid: 26232699 |
[21] | Nigg, J. T . ( 2000). On inhibition/disinhibition in developmental psychopathology: Views from cognitive and personality psychology and a working inhibition taxonomy. Psychological Bulletin, 126, 220-246. doi: 10.1037//0033-2909.126.2.220URLpmid: 10748641 |
[22] | Nitsche M. A., & Paulus W . ( 2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(3), 633-639. |
[23] | Nordmann G., Azorina V., Langguth B., Schecklmann M ., ( 2015). A systematic review of non-motor rTMS induced motor cortex plasticity. Frontiers in Human Neuroscience, 9, 416. doi: 10.3389/fnhum.2015.00416URLpmid: 4508515 |
[24] | Palm U., Hasan A., Strube W., & Padberg F . ( 2016). tDCS for the treatment of depression: A comprehensive review. European Archives of Psychiatry and Clinical Neuroscience, 266(8), 681-694. doi: 10.1007/s00406-016-0674-9URLpmid: 26842422 |
[25] | Penolazzi B., Stramaccia D. F., Braga M., Mondini S., & Galfano G . ( 2014). Human memory retrieval and inhibitory control in the brain: Beyond correlational evidence. The Journal of Neuroscience, 34(19), 6606-6610. doi: 10.1523/JNEUROSCI.0349-14.2014URLpmid: 24806685 |
[26] | Reyes-López, J., Ricardo-Garcell, J., Armas-Casta?eda, G., García-Anaya, M., Arango-De Montis, I., González-Olvera, J. J., & Pellicer, F.( 2017). Clinical improvement in patients with borderline personality disorder after treatment with repetitive transcranial magnetic stimulation: Preliminary results. Revista Brasileira de Psiquiatria, doi: 10.1590/1516-4446-2016-2112. (in Press) doi: 10.1590/1516-4446-2016-2112URLpmid: 28614492 |
[27] | Rubia K., Smith A. B., Brammer M. J., & Taylor E . ( 2003). Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. NeuroImage, 20, 351-358. doi: 10.1016/S1053-8119(03)00275-1URLpmid: 14527595 |
[28] | Soltaninejad Z., Nejati V., & Ekhtiari H . ( 2015). Effect of anodal and cathodal transcranial direct current stimulation on DLPFC on modulation of inhibitory control in ADHD. Journal of Attention Disorders, 101(4), 291-302. doi: 10.1177/1087054715618792URLpmid: 26689935 |
[29] | Stramaccia D. F., Penolazzi B., Sartori G., Braga M., Mondini S., & Galfano G . ( 2015). Assessing the effects of tDCS over a delayed response inhibition task by targeting the right inferior frontal gyrus and right dorsolateral prefrontal cortex. Experimental Brain Research, 233(8), 2283-2290. doi: 10.1007/s00221-015-4297-6URLpmid: 25925996 |
[30] | van Holst R. J., van Holstein M., van den Brink W., Veltman D. J., & Goudriaan A. E . ( 2012). Response inhibition during cue reactivity in problem gamblers: An fmri study. PLoS One, 7, e30909. doi: 10.1371/journal.pone.0030909URLpmid: 3316530 |
[31] | Wang Y., & Cai H. D . ( 2010). Mental processing models and neural mechanisms for response inhibition. Advances in Psychological Science, 18(2), 220-229. |
[ 王琰, 蔡厚德 . ( 2010). 反应抑制的心理加工模型与神经机制. 心理科学进展, 18(2), 220-229.] | |
[32] | Weidacker K., Weidemann C. T., Boy F., & Johnston S. J . ( 2016). Cathodal tDCS improves task performance in participants high in Coldheartedness. Clinical Neurophysiology, 127(9), 3102-3109. doi: 10.1016/j.clinph.2016.05.274URLpmid: 27472546 |
[33] | Zhou D. D., Wang W., Wang G. M., Li D. Q., & Kuang L . ( 2017). An updated meta-analysis: Short-term therapeutic effects of repeated transcranial magnetic stimulation in treating obsessive-compulsive disorder. Journal of Affective Disorders, 215, 187-196. doi: 10.1016/j.jad.2017.03.033URLpmid: 28340445 |
相关文章 13
[1] | 杨群, 张积家, 范丛慧. 维吾尔族与汉族的大学生在汉语歧义词消解中的语境促进效应及反应抑制效应[J]. 心理学报, 2021, 53(7): 746-757. |
[2] | 华艳, 李明霞, 王巧婷, 冯彩霞, 张晶. 左侧眶额皮层在自动情绪调节下注意选择中的作用:来自经颅直流电刺激的证据[J]. 心理学报, 2020, 52(9): 1048-1056. |
[3] | 陈洁佳, 周翊, 陈杰. 音乐训练与抑制控制的关系:来自ERPs的证据[J]. 心理学报, 2020, 52(12): 1365-1376. |
[4] | 王元, 李柯, 盖笑松, 曹逸飞. 基于即时反馈的反应抑制训练对青少年和成人执行功能的训练效应和迁移效应[J]. 心理学报, 2020, 52(10): 1212-1223. |
[5] | 殷西乐,李建标,陈思宇,刘晓丽,郝洁. 第三方惩罚的神经机制:来自经颅直流电刺激的证据[J]. 心理学报, 2019, 51(5): 571-583. |
[6] | 张丹丹,刘珍莉,陈钰,买晓琴. 右腹外侧前额叶对高抑郁水平成年人社会情绪调节的作用:一项tDCS研究[J]. 心理学报, 2019, 51(2): 207-2015. |
[7] | 王思思,库逸轩. 右侧背外侧前额叶在视觉工作记忆中的因果性作用[J]. 心理学报, 2018, 50(7): 727-738. |
[8] | 甘甜, 石睿, 刘超, 罗跃嘉. 经颅直流电刺激右侧颞顶联合区 对助人意图加工的影响[J]. 心理学报, 2018, 50(1): 36-46. |
[9] | 罗俊; 叶航;郑昊力;贾拥民;陈姝; 黄达强. 左右侧颞顶联合区对道德意图信息加工能力的共同作用——基于经颅直流电刺激技术[J]. 心理学报, 2017, 49(2): 228-240. |
[10] | 窦伟伟;郑希付;杨慧芳;王俊芳;李悦;俄小天;陈倩倩. 认知分心的强度对创伤性信息加工的影响[J]. 心理学报, 2014, 46(5): 656-665. |
[11] | 甘甜;李万清;唐红红;陆夏平;李小俚;刘超;罗跃嘉. 经颅直流电刺激右侧颞顶联合区对道德意图加工的影响[J]. 心理学报, 2013, 45(9): 1004-1014. |
[12] | 余凤琼,袁加锦,罗跃嘉. 情绪干扰听觉反应冲突的ERP研究[J]. 心理学报, 2009, 41(07): 594-601. |
[13] | 王勇慧,周晓林,王玉凤,张亚旭. 两种亚型ADHD儿童在停止信号任务中的反应抑制[J]. 心理学报, 2005, 37(02): 178-188. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4194