
中国科学院大学心理学系, 北京 100049
收稿日期:
2018-09-25出版日期:
2019-06-15发布日期:
2019-04-22通讯作者:
王锦琰E-mail:wangjy@psych.ac.cn基金资助:
国家自然科学基金项目(31271092)The effect of music training on pre-attentive processing of the brain
CHEN Yahong, WANG Jinyan(
Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
Received:
2018-09-25Online:
2019-06-15Published:
2019-04-22Contact:
WANG Jinyan E-mail:wangjy@psych.ac.cn摘要/Abstract
摘要: 前注意加工(pre-attentive processing)是发生在注意之前不依赖于意识的一种认知过程, 它反映了大脑对刺激的无意识的、自动的加工。失匹配负波(mismatch negativity, MMN)是研究前注意加工最常用的指标。MMN波幅降低已成为精神分裂症、抑郁症等精神类疾病的重要临床指征。MMN的研究范式主要包括经典oddball范式和多特征范式等。音乐训练对于人脑结构和功能有重要的影响, 对于增加灰质体积、改善注意记忆功能都有着显著的功效。音乐训练对MMN也有显著影响, 并表现在由各类声音特征构建的范式上。未来研究应进一步比较东西方音乐对MMN的影响, 探索更具生态化效度的研究范式, 揭示音乐训练对老年人MMN的影响及机制。
图/表 2

图1(a)多特征范式示意图。S代表标准刺激, D1, D2…分别代表不同的偏差刺激。(b)以阿尔贝蒂低音(Alberti Bass) 为刺激的多特征范式。红框(即左侧框)和绿框(即右侧框)内分别是四个音为一组的旋律, 红框内的第三个音为标准刺激, 绿框内的第三个音为偏差刺激。除了第三个音不同外, 其他三个对应位置上的音都相同 (改编自Vuust et al., 2011)。


图2刺激材料。第一行为标准刺激, 共有三个小节, 其中每一个音的强度都是相同的。音符下面的长灰色条代表声音时长为600 ms, 短灰色条代表声音时长为300 ms。第二行为节拍一致偏差刺激, 即每个音的时长都与标准刺激一样, 但在最后一小节的第一拍上强度增加(箭头所指)。第三行为节拍不一致偏差刺激, 将最后一小节的第一个音加重, 并提前了300 ms (箭头所指) (改编自Geiser et al., 2010)。

参考文献 46
1 | Bhattacharya J., Petsche H., Feldmann U., & Rescher B . ( 2001). EEG gamma-band phase synchronization between posterior and frontal cortex during mental rotation in humans. Neuroscience Letters, 311( 1), 29-32. doi: 10.1016/S0304-3940(01)02133-4URL |
2 | Brattico E., Pallesen K. J., Varyagina O., Bailey C., Anourova I., Järvenpää M., .. Tervaniemi M . ( 2009). Neural discrimination of nonprototypical chords in music experts and laymen: A MEG Study. Journal of Cognitive Neuroscience, 21( 11), 2230-2244. doi: 10.1162/jocn.2008.21144URL |
3 | Chen C. Y., Sung J. Y., & Cheng Y. W . ( 2016). Neural dynamics of emotional salience processing in response to voices during the stages of sleep. Frontiers in Behavioral Neuroscience, 10, 117. |
4 | Cooray G., Garrido M. I., Hyllienmark L., & Brismar T . ( 2014). A mechanistic model of mismatch negativity in the ageing brain. Clinical Neurophysiology, 125( 9), 1774-1782. doi: 10.1016/j.clinph.2014.01.015URL |
5 | Di Mauro M., Toffalini E., Grassi M., & Petrini K . ( 2018). Effect of long-term music training on emotion perception from drumming improvisation. Frontiers in Psychology, 9, 16. doi: 10.3389/fpsyg.2018.00016URL |
6 | Fujioka T., Trainor L. J., Ross B., Kakigi R., & Pantev C . ( 2004). Musical training enhances automatic encoding of melodic contour and interval structure. Journal of Cognitive Neuroscience, 16( 6), 1010-1021. doi: 10.1162/0898929041502706URL |
7 | Gaser, C., & Schlaug, G . ( 2003). Brain structures differ between musicians and non-musicians. Journal of Neuroscience, 23( 27), 9240-9245. doi: 10.1523/JNEUROSCI.23-27-09240.2003URL |
8 | Geiser E., Sandmann P., Jäncke L., & Meyer M . ( 2010). Refinement of metre perception-training increases hierarchical metre processing. European Journal of Neuroscience, 32( 11), 1979-1985. doi: 10.1111/ejn.2010.32.issue-11URL |
9 | Grady C. L., Yu H., & Alain C . ( 2008). Age-related differences in brain activity underlying working memory for spatial and nonspatial auditory information. Cerebral Cortex, 18( 1), 189-199. doi: 10.1093/cercor/bhm045URL |
10 | Hyde K. L., Lerch J., Norton A., Forgeard M., Winner E., Evans A. C., & Schlaug G . ( 2009). Musical training shapes structural brain development. Journal of Neuroscience, 29( 10), 3019-3025. doi: 10.1523/JNEUROSCI.5118-08.2009URL |
11 | Juan E., Nguissi N. A. N., Tzovara A., Viceic D., Rusca M., Oddo M., .. De Lucia M . ( 2016). Evidence of trace conditioning in comatose patients revealed by the reactivation of EEG responses to alerting sounds. Neuroimage, 141, 530-541. doi: 10.1016/j.neuroimage.2016.07.039URL |
12 | Koelsch S., Schröger E., & Tervaniemi M . ( 1999). Superior pre-attentive auditory processing in musicians. Neuroreport, 10( 6), 1309-1313. doi: 10.1097/00001756-199904260-00029URL |
13 | Kraus N., Slater J., Thompson E. C., Hornickel J., Strait D. L., Nicol T., & White-Schwoch T . ( 2014). Music enrichment programs improve the neural encoding of speech in at-risk children. Journal of Neuroscience, 34( 36), 11913-11918. doi: 10.1523/JNEUROSCI.1881-14.2014URL |
14 | Lappe C., Herholz S. C., Trainor L. J., & Pantev C . ( 2008). Cortical plasticity induced by short-term unimodal and multimodal musical training. Journal of Neuroscience, 28( 39), 9632-9639. doi: 10.1523/JNEUROSCI.2254-08.2008URL |
15 | Logan, G. D . ( 1992). Attention and preattention in theories of automaticity. The American Journal of Psychology, 105( 2), 317-339. doi: 10.2307/1423031URL |
16 | Luo C., Guo Z. W., Lai Y. X., Liao W., Liu Q., Kendrick K. M., .. Li H . ( 2012). Musical training induces functional plasticity in perceptual and motor networks: Insights from resting-state fMRI. PloS One, 7( 5), e36568. doi: 10.1371/journal.pone.0036568URL |
17 | May P., Tiitinen H., Ilmoniemi R. J., Nyman G., Taylor J. G., & Näätänen R . ( 1999). Frequency change detection in human auditory cortex. Journal of Computational Neuroscience, 6( 2), 99-120. doi: 10.1023/A:1008896417606URL |
18 | Meyer M., Elmer S., Ringli M., Oechslin M. S., Baumann S., & Jancke L . ( 2011). Long-term exposure to music enhances the sensitivity of the auditory system in children. European Journal of Neuroscience, 34( 5), 755-765. doi: 10.1111/j.1460-9568.2011.07795.xURL |
19 | Näätänen R., Gaillard A. W. K., & Mäntysalo S . ( 1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42( 4), 313-329. doi: 10.1016/0001-6918(78)90006-9URL |
20 | Näätänen R., Kujala T., Escera C., Baldeweg T., Kreegipuu K., Carlson S., & Ponton C . ( 2012). The mismatch negativity (MMN) - A unique window to disturbed central auditory processing in ageing and different clinical conditions. Clinical Neurophysiology, 123( 3), 424-458. doi: 10.1016/j.clinph.2011.09.020URL |
21 | Näätänen R., Pakarinen S., Rinne T., & Takegata R . ( 2004). The mismatch negativity (MMN): Towards the optimal paradigm. Clinical Neurophysiology, 115( 1), 140-144. doi: 10.1016/j.clinph.2003.04.001URL |
22 | Näätänen R., Schröger E., Karakas S., Tervaniemi M., & Paavilainen P . ( 1993). Development of a memory trace for a complex sound in the human brain. Neuroreport, 4( 5), 503-506. doi: 10.1097/00001756-199305000-00010URL |
23 | Näätänen R., Tervaniemi M., Sussman E., Paavilainen P., & Winkler I . ( 2001). 'Primitive intelligence' in the auditory cortex. Trends in Neurosciences, 24( 5), 283-288. doi: 10.1016/S0166-2236(00)01790-2URL |
24 | Nan Y., Liu L., Geiser E., Shu H., Gong C. C., Dong Q., .. Desimone R . ( 2018). Piano training enhances the neural processing of pitch and improves speech perception in Mandarin-speaking children. Proceedings of the National Academy of Sciences of the United States of America, 115( 28), E6630-E6639. doi: 10.1073/pnas.1808412115URL |
25 | Nikjeh D. A., Lister J. J., & Frisch S. A . ( 2009). Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: Influence of music training. Ear and Hearing, 30( 4), 432-446. doi: 10.1097/AUD.0b013e3181a61bf2URL |
26 | Norton A., Winner E., Cronin K., Overy K., Lee D. J., & Schlaug G . ( 2005). Are there pre-existing neural, cognitive, or motoric markers for musical ability? Brain and Cognition, 59( 2), 124-134. doi: 10.1016/j.bandc.2005.05.009URL |
27 | Pantev C., Ross B., Fujioka T., Trainor L. J., Schulte M., & Schulz M . ( 2003). Music and learning-induced cortical plasticity. Annals of the New York Academy of Sciences, 999( 1), 438-450. doi: 10.1196/annals.1284.054URL |
28 | Putkinen V., Tervaniemi M., Saarikivi K., Ojala P., & Huotilainen M . ( 2014). Enhanced development of auditory change detection in musically trained school- aged children: A longitudinal event-related potential study. Developmental Science, 17( 2), 282-297. doi: 10.1111/desc.2014.17.issue-2URL |
29 | Ruzzoli M., Pirulli C., Brignani D., Maioli C., & Miniussi C . ( 2012). Sensory memory during physiological aging indexed by mismatch negativity (MMN). Neurobiology of Aging, 33( 3), 625.e21- 625. e30. |
30 | Sams M., Paavilainen P., Alho K., & Näätänen R . ( 1985). Auditory frequency discrimination and event-related potentials Discrimination de fréquences auditives et potentiels liés à l'événement. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 62( 6), 437-448. doi: 10.1016/0168-5597(85)90054-1URL |
31 | Schneider P., Scherg M., Dosch H. G., Specht H. J., Gutschalk A., & Rupp A . ( 2002). Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5( 7), 688-694. doi: 10.1038/nn871 |
32 | Tervaniemi M., Castaneda A., Knoll M., & Uther M . ( 2006). Sound processing in amateur musicians and nonmusicians: Event-related potential and behavioral indices. Neuroreport, 17( 11), 1225-1228. doi: 10.1097/01.wnr.0000230510.55596.8bURL |
33 | Tervaniemi M., Just V., Koelsch S., Widmann A., & Schröger E . ( 2005). Pitch discrimination accuracy in musicians vs nonmusicians: An event-related potential and behavioral study. Experimental Brain Research, 161( 1), 1-10. doi: 10.1007/s00221-004-2044-5URL |
34 | Tervaniemi M., Rytkönen M., Schröger E., Ilmoniemi R. J., & Näätänen R . ( 2001). Superior formation of cortical memory traces for melodic patterns in musicians. Learning & Memory, 8( 5), 295-300. |
35 | Tervaniemi M., Sannemann C., Nöyränen M., Salonen J., & Pihko E . ( 2011). Importance of the left auditory areas in chord discrimination in music experts as demonstrated by MEG. European Journal of Neuroscience, 34( 3), 517-523. doi: 10.1111/ejn.2011.34.issue-3URL |
36 | Virtala P., Huotilainen M., Partanen E., & Tervaniemi M . ( 2014). Musicianship facilitates the processing of Western music chords-An ERP and behavioral study. Neuropsychologia, 61, 247-258. doi: 10.1016/j.neuropsychologia.2014.06.028URL |
37 | Virtala P., Huotilainen M., Putkinen V., Makkonen T., & Tervaniemi M . ( 2012). Musical training facilitates the neural discrimination of major versus minor chords in 13- year-old children. Psychophysiology, 49( 8), 1125-1132. |
38 | Vuust P., Brattico E., Glerean E., Seppänen M., Pakarinen S., Tervaniemi M., & Näätänen R . ( 2011). New fast mismatch negativity paradigm for determining the neural prerequisites for musical ability. Cortex, 47( 9), 1091-1098. doi: 10.1016/j.cortex.2011.04.026URL |
39 | Vuust P., Brattico E., Seppänen M., Näätänen R., & Tervaniemi M . ( 2012 a). The sound of music: Differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm. Neuropsychologia, 50( 7), 1432-1443. doi: 10.1016/j.neuropsychologia.2012.02.028URL |
40 | Vuust P., Brattico E., Seppänen M., Näätänen R., Tervaniemi M., & Annals, N. Y. A. S . ( 2012 b). Practiced musical style shapes auditory skills. Neurosciences and Music Iv: Learning and Memory, 1252( 1), 139-146. |
41 | Vuust P., Liikala L., Näätänen R., Brattico P., & Brattico E . ( 2016). Comprehensive auditory discrimination profiles recorded with a fast parametric musical multi-feature mismatch negativity paradigm. Clinical Neurophysiology, 127( 4), 2065-2077. doi: 10.1016/j.clinph.2015.11.009URL |
42 | Vuust P., Ostergaard L., Pallesen K. J., Bailey C., & Roepstorff A . ( 2009). Predictive coding of music-Brain responses to rhythmic incongruity. Cortex, 45( 1), 80-92. doi: 10.1016/j.cortex.2008.05.014URL |
43 | Wang X. Y., Fu R., Xia X. Y., Chen X. L., Wu H., Landi N., .. Cong F. Y . ( 2018). Spatial Properties of Mismatch Negativity in Patients with Disorders of Consciousness. Neuroscience Bulletin, 34( 4), 700-708. doi: 10.1007/s12264-018-0260-4 |
44 | Zhao, T. C., & Kuhl, P. K . ( 2016). Musical intervention enhances infants' neural processing of temporal structure in music and speech. Procedings of the National Academy of Sciences of the United States of America, 113( 19), 5212-5217. doi: 10.1073/pnas.1603984113URL |
45 | Zhao T. C., Lam H. T. G., Sohi H., & Kuhl P. K . ( 2017). Neural processing of musical meter in musicians and non-musicians. Neuropsychologia, 106, 289-297. doi: 10.1016/j.neuropsychologia.2017.10.007URL |
46 | Zinke K., Thöne L., Bolinger E. M., & Born J . ( 2018). Dissociating long and short-term memory in three-month-old infants using the mismatch response to voice stimuli. Frontiers in Psychology, 9, 8. doi: 10.3389/fpsyg.2018.00008URL |
相关文章 9
[1] | 王盛, 陈雅弘, 王锦琰. 动物前注意加工模型的建立及评价: 基于精神类疾病损伤[J]. 心理科学进展, 2020, 28(12): 2027-2039. |
[2] | 丁小斌, 刘建邑, 王亚鹏, 康铁君, 党宸. 情绪变化的自动化加工:来自EMMN的启示[J]. 心理科学进展, 2020, 28(1): 85-97. |
[3] | 吕雪靖, 侯欣. 听觉预测编码:对声音重复和变化的神经反应[J]. 心理科学进展, 2019, 27(12): 1996-2006. |
[4] | 辛昕;任桂琴;李金彩;唐晓雨. 早期视听整合加工——来自MMN的证据[J]. 心理科学进展, 2017, 25(5): 757-768. |
[5] | 陈杰, 刘雷, 王蓉, 沈海洲. 音乐训练对执行功能的影响[J]. 心理科学进展, 2017, 25(11): 1854-1864. |
[6] | 周临舒;蒋存梅. 音乐传达哲理性概念的认知神经机制[J]. 心理科学进展, 2016, 24(6): 855-862. |
[7] | 王杭;江俊;蒋存梅. 音乐训练对认知能力的影响[J]. 心理科学进展, 2015, 23(3): 419-429. |
[8] | 王孟元;宁睿婧;张雪岩. 音乐训练延缓言语感知老龄化[J]. 心理科学进展, 2015, 23(1): 22-29. |
[9] | 贺金波;李兵兵;周宗奎. 酒精对前注意加工的影响:失匹配负波的证据[J]. 心理科学进展, 2011, 19(11): 1645-1650. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=4706