删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

音乐训练对大脑前注意加工的影响

本站小编 Free考研考试/2022-01-01

陈雅弘, 王锦琰()
中国科学院大学心理学系, 北京 100049
收稿日期:2018-09-25出版日期:2019-06-15发布日期:2019-04-22
通讯作者:王锦琰E-mail:wangjy@psych.ac.cn

基金资助:国家自然科学基金项目(31271092)

The effect of music training on pre-attentive processing of the brain

CHEN Yahong, WANG Jinyan()
Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
Received:2018-09-25Online:2019-06-15Published:2019-04-22
Contact:WANG Jinyan E-mail:wangjy@psych.ac.cn






摘要/Abstract


摘要: 前注意加工(pre-attentive processing)是发生在注意之前不依赖于意识的一种认知过程, 它反映了大脑对刺激的无意识的、自动的加工。失匹配负波(mismatch negativity, MMN)是研究前注意加工最常用的指标。MMN波幅降低已成为精神分裂症、抑郁症等精神类疾病的重要临床指征。MMN的研究范式主要包括经典oddball范式和多特征范式等。音乐训练对于人脑结构和功能有重要的影响, 对于增加灰质体积、改善注意记忆功能都有着显著的功效。音乐训练对MMN也有显著影响, 并表现在由各类声音特征构建的范式上。未来研究应进一步比较东西方音乐对MMN的影响, 探索更具生态化效度的研究范式, 揭示音乐训练对老年人MMN的影响及机制。



图1(a)多特征范式示意图。S代表标准刺激, D1, D2…分别代表不同的偏差刺激。(b)以阿尔贝蒂低音(Alberti Bass) 为刺激的多特征范式。红框(即左侧框)和绿框(即右侧框)内分别是四个音为一组的旋律, 红框内的第三个音为标准刺激, 绿框内的第三个音为偏差刺激。除了第三个音不同外, 其他三个对应位置上的音都相同 (改编自Vuust et al., 2011)。
图1(a)多特征范式示意图。S代表标准刺激, D1, D2…分别代表不同的偏差刺激。(b)以阿尔贝蒂低音(Alberti Bass) 为刺激的多特征范式。红框(即左侧框)和绿框(即右侧框)内分别是四个音为一组的旋律, 红框内的第三个音为标准刺激, 绿框内的第三个音为偏差刺激。除了第三个音不同外, 其他三个对应位置上的音都相同 (改编自Vuust et al., 2011)。



图2刺激材料。第一行为标准刺激, 共有三个小节, 其中每一个音的强度都是相同的。音符下面的长灰色条代表声音时长为600 ms, 短灰色条代表声音时长为300 ms。第二行为节拍一致偏差刺激, 即每个音的时长都与标准刺激一样, 但在最后一小节的第一拍上强度增加(箭头所指)。第三行为节拍不一致偏差刺激, 将最后一小节的第一个音加重, 并提前了300 ms (箭头所指) (改编自Geiser et al., 2010)。
图2刺激材料。第一行为标准刺激, 共有三个小节, 其中每一个音的强度都是相同的。音符下面的长灰色条代表声音时长为600 ms, 短灰色条代表声音时长为300 ms。第二行为节拍一致偏差刺激, 即每个音的时长都与标准刺激一样, 但在最后一小节的第一拍上强度增加(箭头所指)。第三行为节拍不一致偏差刺激, 将最后一小节的第一个音加重, 并提前了300 ms (箭头所指) (改编自Geiser et al., 2010)。







1 Bhattacharya J., Petsche H., Feldmann U., & Rescher B . ( 2001). EEG gamma-band phase synchronization between posterior and frontal cortex during mental rotation in humans. Neuroscience Letters, 311( 1), 29-32.
doi: 10.1016/S0304-3940(01)02133-4URL
2 Brattico E., Pallesen K. J., Varyagina O., Bailey C., Anourova I., Järvenpää M., .. Tervaniemi M . ( 2009). Neural discrimination of nonprototypical chords in music experts and laymen: A MEG Study. Journal of Cognitive Neuroscience, 21( 11), 2230-2244.
doi: 10.1162/jocn.2008.21144URL
3 Chen C. Y., Sung J. Y., & Cheng Y. W . ( 2016). Neural dynamics of emotional salience processing in response to voices during the stages of sleep. Frontiers in Behavioral Neuroscience, 10, 117.
4 Cooray G., Garrido M. I., Hyllienmark L., & Brismar T . ( 2014). A mechanistic model of mismatch negativity in the ageing brain. Clinical Neurophysiology, 125( 9), 1774-1782.
doi: 10.1016/j.clinph.2014.01.015URL
5 Di Mauro M., Toffalini E., Grassi M., & Petrini K . ( 2018). Effect of long-term music training on emotion perception from drumming improvisation. Frontiers in Psychology, 9, 16.
doi: 10.3389/fpsyg.2018.00016URL
6 Fujioka T., Trainor L. J., Ross B., Kakigi R., & Pantev C . ( 2004). Musical training enhances automatic encoding of melodic contour and interval structure. Journal of Cognitive Neuroscience, 16( 6), 1010-1021.
doi: 10.1162/0898929041502706URL
7 Gaser, C., & Schlaug, G . ( 2003). Brain structures differ between musicians and non-musicians. Journal of Neuroscience, 23( 27), 9240-9245.
doi: 10.1523/JNEUROSCI.23-27-09240.2003URL
8 Geiser E., Sandmann P., Jäncke L., & Meyer M . ( 2010). Refinement of metre perception-training increases hierarchical metre processing. European Journal of Neuroscience, 32( 11), 1979-1985.
doi: 10.1111/ejn.2010.32.issue-11URL
9 Grady C. L., Yu H., & Alain C . ( 2008). Age-related differences in brain activity underlying working memory for spatial and nonspatial auditory information. Cerebral Cortex, 18( 1), 189-199.
doi: 10.1093/cercor/bhm045URL
10 Hyde K. L., Lerch J., Norton A., Forgeard M., Winner E., Evans A. C., & Schlaug G . ( 2009). Musical training shapes structural brain development. Journal of Neuroscience, 29( 10), 3019-3025.
doi: 10.1523/JNEUROSCI.5118-08.2009URL
11 Juan E., Nguissi N. A. N., Tzovara A., Viceic D., Rusca M., Oddo M., .. De Lucia M . ( 2016). Evidence of trace conditioning in comatose patients revealed by the reactivation of EEG responses to alerting sounds. Neuroimage, 141, 530-541.
doi: 10.1016/j.neuroimage.2016.07.039URL
12 Koelsch S., Schröger E., & Tervaniemi M . ( 1999). Superior pre-attentive auditory processing in musicians. Neuroreport, 10( 6), 1309-1313.
doi: 10.1097/00001756-199904260-00029URL
13 Kraus N., Slater J., Thompson E. C., Hornickel J., Strait D. L., Nicol T., & White-Schwoch T . ( 2014). Music enrichment programs improve the neural encoding of speech in at-risk children. Journal of Neuroscience, 34( 36), 11913-11918.
doi: 10.1523/JNEUROSCI.1881-14.2014URL
14 Lappe C., Herholz S. C., Trainor L. J., & Pantev C . ( 2008). Cortical plasticity induced by short-term unimodal and multimodal musical training. Journal of Neuroscience, 28( 39), 9632-9639.
doi: 10.1523/JNEUROSCI.2254-08.2008URL
15 Logan, G. D . ( 1992). Attention and preattention in theories of automaticity. The American Journal of Psychology, 105( 2), 317-339.
doi: 10.2307/1423031URL
16 Luo C., Guo Z. W., Lai Y. X., Liao W., Liu Q., Kendrick K. M., .. Li H . ( 2012). Musical training induces functional plasticity in perceptual and motor networks: Insights from resting-state fMRI. PloS One, 7( 5), e36568.
doi: 10.1371/journal.pone.0036568URL
17 May P., Tiitinen H., Ilmoniemi R. J., Nyman G., Taylor J. G., & Näätänen R . ( 1999). Frequency change detection in human auditory cortex. Journal of Computational Neuroscience, 6( 2), 99-120.
doi: 10.1023/A:1008896417606URL
18 Meyer M., Elmer S., Ringli M., Oechslin M. S., Baumann S., & Jancke L . ( 2011). Long-term exposure to music enhances the sensitivity of the auditory system in children. European Journal of Neuroscience, 34( 5), 755-765.
doi: 10.1111/j.1460-9568.2011.07795.xURL
19 Näätänen R., Gaillard A. W. K., & Mäntysalo S . ( 1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42( 4), 313-329.
doi: 10.1016/0001-6918(78)90006-9URL
20 Näätänen R., Kujala T., Escera C., Baldeweg T., Kreegipuu K., Carlson S., & Ponton C . ( 2012). The mismatch negativity (MMN) - A unique window to disturbed central auditory processing in ageing and different clinical conditions. Clinical Neurophysiology, 123( 3), 424-458.
doi: 10.1016/j.clinph.2011.09.020URL
21 Näätänen R., Pakarinen S., Rinne T., & Takegata R . ( 2004). The mismatch negativity (MMN): Towards the optimal paradigm. Clinical Neurophysiology, 115( 1), 140-144.
doi: 10.1016/j.clinph.2003.04.001URL
22 Näätänen R., Schröger E., Karakas S., Tervaniemi M., & Paavilainen P . ( 1993). Development of a memory trace for a complex sound in the human brain. Neuroreport, 4( 5), 503-506.
doi: 10.1097/00001756-199305000-00010URL
23 Näätänen R., Tervaniemi M., Sussman E., Paavilainen P., & Winkler I . ( 2001). 'Primitive intelligence' in the auditory cortex. Trends in Neurosciences, 24( 5), 283-288.
doi: 10.1016/S0166-2236(00)01790-2URL
24 Nan Y., Liu L., Geiser E., Shu H., Gong C. C., Dong Q., .. Desimone R . ( 2018). Piano training enhances the neural processing of pitch and improves speech perception in Mandarin-speaking children. Proceedings of the National Academy of Sciences of the United States of America, 115( 28), E6630-E6639.
doi: 10.1073/pnas.1808412115URL
25 Nikjeh D. A., Lister J. J., & Frisch S. A . ( 2009). Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: Influence of music training. Ear and Hearing, 30( 4), 432-446.
doi: 10.1097/AUD.0b013e3181a61bf2URL
26 Norton A., Winner E., Cronin K., Overy K., Lee D. J., & Schlaug G . ( 2005). Are there pre-existing neural, cognitive, or motoric markers for musical ability? Brain and Cognition, 59( 2), 124-134.
doi: 10.1016/j.bandc.2005.05.009URL
27 Pantev C., Ross B., Fujioka T., Trainor L. J., Schulte M., & Schulz M . ( 2003). Music and learning-induced cortical plasticity. Annals of the New York Academy of Sciences, 999( 1), 438-450.
doi: 10.1196/annals.1284.054URL
28 Putkinen V., Tervaniemi M., Saarikivi K., Ojala P., & Huotilainen M . ( 2014). Enhanced development of auditory change detection in musically trained school- aged children: A longitudinal event-related potential study. Developmental Science, 17( 2), 282-297.
doi: 10.1111/desc.2014.17.issue-2URL
29 Ruzzoli M., Pirulli C., Brignani D., Maioli C., & Miniussi C . ( 2012). Sensory memory during physiological aging indexed by mismatch negativity (MMN). Neurobiology of Aging, 33( 3), 625.e21- 625. e30.
30 Sams M., Paavilainen P., Alho K., & Näätänen R . ( 1985). Auditory frequency discrimination and event-related potentials Discrimination de fréquences auditives et potentiels liés à l'événement. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 62( 6), 437-448.
doi: 10.1016/0168-5597(85)90054-1URL
31 Schneider P., Scherg M., Dosch H. G., Specht H. J., Gutschalk A., & Rupp A . ( 2002). Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5( 7), 688-694.
doi: 10.1038/nn871
32 Tervaniemi M., Castaneda A., Knoll M., & Uther M . ( 2006). Sound processing in amateur musicians and nonmusicians: Event-related potential and behavioral indices. Neuroreport, 17( 11), 1225-1228.
doi: 10.1097/01.wnr.0000230510.55596.8bURL
33 Tervaniemi M., Just V., Koelsch S., Widmann A., & Schröger E . ( 2005). Pitch discrimination accuracy in musicians vs nonmusicians: An event-related potential and behavioral study. Experimental Brain Research, 161( 1), 1-10.
doi: 10.1007/s00221-004-2044-5URL
34 Tervaniemi M., Rytkönen M., Schröger E., Ilmoniemi R. J., & Näätänen R . ( 2001). Superior formation of cortical memory traces for melodic patterns in musicians. Learning & Memory, 8( 5), 295-300.
35 Tervaniemi M., Sannemann C., Nöyränen M., Salonen J., & Pihko E . ( 2011). Importance of the left auditory areas in chord discrimination in music experts as demonstrated by MEG. European Journal of Neuroscience, 34( 3), 517-523.
doi: 10.1111/ejn.2011.34.issue-3URL
36 Virtala P., Huotilainen M., Partanen E., & Tervaniemi M . ( 2014). Musicianship facilitates the processing of Western music chords-An ERP and behavioral study. Neuropsychologia, 61, 247-258.
doi: 10.1016/j.neuropsychologia.2014.06.028URL
37 Virtala P., Huotilainen M., Putkinen V., Makkonen T., & Tervaniemi M . ( 2012). Musical training facilitates the neural discrimination of major versus minor chords in 13- year-old children. Psychophysiology, 49( 8), 1125-1132.
38 Vuust P., Brattico E., Glerean E., Seppänen M., Pakarinen S., Tervaniemi M., & Näätänen R . ( 2011). New fast mismatch negativity paradigm for determining the neural prerequisites for musical ability. Cortex, 47( 9), 1091-1098.
doi: 10.1016/j.cortex.2011.04.026URL
39 Vuust P., Brattico E., Seppänen M., Näätänen R., & Tervaniemi M . ( 2012 a). The sound of music: Differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm. Neuropsychologia, 50( 7), 1432-1443.
doi: 10.1016/j.neuropsychologia.2012.02.028URL
40 Vuust P., Brattico E., Seppänen M., Näätänen R., Tervaniemi M., & Annals, N. Y. A. S . ( 2012 b). Practiced musical style shapes auditory skills. Neurosciences and Music Iv: Learning and Memory, 1252( 1), 139-146.
41 Vuust P., Liikala L., Näätänen R., Brattico P., & Brattico E . ( 2016). Comprehensive auditory discrimination profiles recorded with a fast parametric musical multi-feature mismatch negativity paradigm. Clinical Neurophysiology, 127( 4), 2065-2077.
doi: 10.1016/j.clinph.2015.11.009URL
42 Vuust P., Ostergaard L., Pallesen K. J., Bailey C., & Roepstorff A . ( 2009). Predictive coding of music-Brain responses to rhythmic incongruity. Cortex, 45( 1), 80-92.
doi: 10.1016/j.cortex.2008.05.014URL
43 Wang X. Y., Fu R., Xia X. Y., Chen X. L., Wu H., Landi N., .. Cong F. Y . ( 2018). Spatial Properties of Mismatch Negativity in Patients with Disorders of Consciousness. Neuroscience Bulletin, 34( 4), 700-708.
doi: 10.1007/s12264-018-0260-4
44 Zhao, T. C., & Kuhl, P. K . ( 2016). Musical intervention enhances infants' neural processing of temporal structure in music and speech. Procedings of the National Academy of Sciences of the United States of America, 113( 19), 5212-5217.
doi: 10.1073/pnas.1603984113URL
45 Zhao T. C., Lam H. T. G., Sohi H., & Kuhl P. K . ( 2017). Neural processing of musical meter in musicians and non-musicians. Neuropsychologia, 106, 289-297.
doi: 10.1016/j.neuropsychologia.2017.10.007URL
46 Zinke K., Thöne L., Bolinger E. M., & Born J . ( 2018). Dissociating long and short-term memory in three-month-old infants using the mismatch response to voice stimuli. Frontiers in Psychology, 9, 8.
doi: 10.3389/fpsyg.2018.00008URL




[1]王盛, 陈雅弘, 王锦琰. 动物前注意加工模型的建立及评价: 基于精神类疾病损伤[J]. 心理科学进展, 2020, 28(12): 2027-2039.
[2]丁小斌, 刘建邑, 王亚鹏, 康铁君, 党宸. 情绪变化的自动化加工:来自EMMN的启示[J]. 心理科学进展, 2020, 28(1): 85-97.
[3]吕雪靖, 侯欣. 听觉预测编码:对声音重复和变化的神经反应[J]. 心理科学进展, 2019, 27(12): 1996-2006.
[4]辛昕;任桂琴;李金彩;唐晓雨. 早期视听整合加工——来自MMN的证据[J]. 心理科学进展, 2017, 25(5): 757-768.
[5]陈杰, 刘雷, 王蓉, 沈海洲. 音乐训练对执行功能的影响[J]. 心理科学进展, 2017, 25(11): 1854-1864.
[6]周临舒;蒋存梅. 音乐传达哲理性概念的认知神经机制[J]. 心理科学进展, 2016, 24(6): 855-862.
[7]王杭;江俊;蒋存梅. 音乐训练对认知能力的影响[J]. 心理科学进展, 2015, 23(3): 419-429.
[8]王孟元;宁睿婧;张雪岩. 音乐训练延缓言语感知老龄化[J]. 心理科学进展, 2015, 23(1): 22-29.
[9]贺金波;李兵兵;周宗奎. 酒精对前注意加工的影响:失匹配负波的证据[J]. 心理科学进展, 2011, 19(11): 1645-1650.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=4706
相关话题/心理 科学 音乐 材料 神经