删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于时空分布式的CMIP5气候多模式集合优化

本站小编 Free考研考试/2021-12-20

基于时空分布式的CMIP5气候多模式集合优化

左正康1,2, 张飞舟2, 张玲1,3, 孙逸渊2, 张瑞华2, 于田4, 陆建忠1,?
1. 武汉大学测绘遥感信息工程国家重点实验室, 武汉 4300792. 北京大学遥感与地理信息系统研究所, 北京 1008713. 中国地质大学(武汉)环境学院大气科学系, 武汉 4300784. 首都师范大学信息工程学院, 北京 100048

收稿日期:2019-09-08修回日期:2019-12-20出版日期:2020-09-20

基金资助:国家重点研发计划项目(2018YFC1506506)、武汉市应用基础前沿专项(2019020701011502)、湖北省自然科学基金(2019CFB736)、江西省重点研发计划(20201BBG71002)和测绘遥感信息工程国家重点实验室专项科研经费资助


CMIP5 Climate Multi-model Ensemble Optimization Based on Spatial-Temporal Distribution

ZUO Zhengkang1,2, ZHANG Feizhou2, ZHANG Ling1,3, SUN Yiyuan2, ZHANG Ruihua2, YU Tian4, LU Jianzhong1,?
1. State Key laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 4300792. Institute of Remote Sensing and Geographic Information System, Peking University, Beijing 1008713. Department of Atmospheric Science, School of Environmental Studies, China University of Geoscience, Wuhan 4300784. Information Engineering College, Capital Normal University, Beijing 100048

Received:2019-09-08Revised:2019-12-20Published:2020-09-20



PDF

(7751KB)

可视化

0

复制本文网址



1. 探讨2016版国际胰瘘研究小组定义和分级系统对胰腺术后患者胰瘘分级的影响.PDF(500KB)

-->



摘要/Abstract


摘要: 为了降低单一模式的不确定性和传统模式集合在时间和空间上分布的不均匀性, 建立时空分布式的CMIP5气候多模式集合。利用改进的遗传算法, 从时间和空间尺度优化CMIP5全球气候数据多模式集合, 并采用Taylor图评估其模拟性能。实验结果表明, 基于时空分布式的多模式集合优于单一模式和等权集合。

引用本文



左正康, 张飞舟, 张玲, 孙逸渊, 张瑞华, 于田, 陆建忠. 基于时空分布式的CMIP5气候多模式集合优化[J]. 北京大学学报自然科学版, 2020, 56(5): 805-814.
ZUO Zhengkang, ZHANG Feizhou, ZHANG Ling, SUN Yiyuan, ZHANG Ruihua, YU Tian, LU Jianzhong. CMIP5 Climate Multi-model Ensemble Optimization Based on Spatial-Temporal Distribution[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(5): 805-814.





PDF全文下载地址:

http://xbna.pku.edu.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=3519
相关话题/优化 遥感 信息工程 北京大学 北京