量子物态调控是当今凝聚态物质科学的主要研究前沿之一,对信息科学技术的发展具有潜在的重大影响。对于复杂量子材料系统,由于其内部存在多种自由度的耦合,它们的竞争或合作会导致材料形成不同的量子涨落或量子有序态(如超导、磁性、密度波等)。通常人们通过改变温度、压力、磁场等手段可实现对其量子物态或性质的调控。近年来随着脉冲激光技术的发展,特别是基于具有超强瞬时电场的超短激光脉冲发展起来的超快实验技术正在成为调控和探测量子物态的先进手段之一。通常弱场激发下可利用超快光谱技术探测材料在激发后由非平衡态到平衡态的动力学弛豫过程,而强场脉冲激光激发则可能驱动量子材料发生超快时间尺度的相变。然而,超快脉冲激光诱导的稳定相变仍处于早期研究阶段,特别是对绝缘体到金属相变的研究。
近日,北京大学物理学院量子材料科学中心王楠林教授课题组及合作者结合脉冲激光激发与输运测量,报道了在广受关注的激子绝缘体候选材料Ta2NiSe5中脉冲激光所诱导的多级相变现象,并通过泵浦探测超快光谱和透射电子显微镜(TEM)技术,揭示了相变过程中的结构演化特征。
该研究发现,在中等强度脉冲激光激发下,Ta2NiSe5中出现可逆的瞬态结构相变,主要体现在超快光谱中某些相干声子的消失;当脉冲激光场强大于某个阈值,将驱动体系到达一个新的稳定的低电阻态,且这一低电阻态可稳定持续到至少350K。进一步的超快光谱以及高分辨TEM实验均表明新的稳定态具有与原始体系完全不同的结构,进入了一个全新的“隐藏”物相。Ta2NiSe5体系光诱导的多级相变现象以及所诱导的新的稳定物相,为人们研究该体系的激子相互作用以及利用光场调控手段创造新的物相提供了重要参考。值得关注的是,通常改变温度、压力、磁场等外界参量对物质系统是缓变过程,可以视为绝热条件下的变化,而强场超短激光脉冲则可以驱动量子材料发生超快时间尺度、非绝热条件的相变,实现改变温度、压力、磁场等绝热变化途径完全不能达到的全新量子物态。这里光驱动的Ta2NiSe5体系达到的低电阻态正是这样一种情况。超快调控作为量子调控的崭新手段,对发现新现象、新效应有着重要意义。
图1:(a) Ta2NiSe5的晶格结构;(b) 强场(3.5mJ/cm2)脉冲激光激相变前后的输运结果。插图为实验光路示意图;(c) Ta2NiSe5样品电阻随脉冲个数及不同电场强度的变化。
图2:Ta2NiSe5光诱导相变的超快时间分辨光谱分析。(a) 初始态(Pristine)及光诱导低电阻态(PI-LR)时域反射率光谱图。(b)初始态和低电阻态在低温50 K和高温350 K的声子对照谱图。(c)50 K-350 K变温过程中,初始态和低电阻态的声子演变过程。
图3:利用电镜TEM对初始态和光诱导低电阻(PI-LR)态的结构表征。(a)(b) Ta2NiSe5的原子模型图以及[1 1 0]方向投影的原子分布图。(c)(d)(e)分别为初始态在300 K时[1 1 0]方向的样品形貌图(衍射斑)、原子分辨图以及选区放大图。(f)(g)(h)是对PI-LR态的相同表征,分别对应于(c)(d)(e)。
该工作发表于《自然·通讯》【Nature Communications 12, 2050 (2021)】。王楠林和松山湖材料实验室吴东副研究员是文章的共同通讯作者,量子材料科学中心博士研究生刘巧梅、松山湖材料实验室吴东副研究员和中科院物理所李建奇研究组李子安副研究员是文章共同第一作者。该工作得到了国家自然科学基金和科学技术部国家重点研发计划的经费支持。
原文链接:https://www.nature.com/articles/s41467-021-22345-3
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
物理学院量子材料科学中心王楠林课题组及其合作者利用超快激光在Ta2NiSe5中诱发多级以及稳定相变
本站小编 Free考研考试/2021-12-20
相关话题/激光 材料 结构 光谱 技术
物理学院量子材料科学中心高鹏课题组与合作者在非极性材料中设计产生了纳米尺寸的极性拓扑反涡旋
寻找新颖拓扑结构并探索其物性是当前凝聚态物理研究的一个重点。这些拓扑结构有望为后摩尔时代电子学及其器件提供原材料。目前,人们对磁性材料中具有拓扑稳定性的实空间自旋结构,如涡旋、斯格明子、半子等,已经开展了广泛的研究。对于介电材料体系,偶极子也能在晶格自由度和电荷自由度的共同调控下发生旋转,形成拓扑稳 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20深研院新材料学院潘锋课题组在构建材料知识图谱研究方面取得进展
随着数据挖掘技术的日益成熟,将其运用于材料科学研究已逐渐成为可能。这导致材料信息学这一新兴领域的出现。经过长时间的发展,大量的材料学术文献积累了丰富的科学成果,以文本形式散布在文献中的科学知识一般仍由研究人员手动收集和分析,这通常十分耗时且难以保证信息的完整度。如果将文献中的材料科学信息表示为结构化 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20深研院化生学院杨震课题组利用可见光催化形式[2+2]/retro-Mannich反应构建cyclohepta[b]indole结构
近日,深圳研究生院化学生物学与生物技术学院杨震课题组在《德国应用化学》发表通讯论文,报道了可见光催化形式[2+2]/retro-Mannich反应构建cyclohepta[b]indole结构的研究工作。全碳季碳手性中心普遍存在于复杂天然产物和功能分子,具有重要的结构和功能意义。立体选择性构筑高空间 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20物理学院高鹏课题组发展电镜新技术在纳米分辨率下绘制声子色散分布图
声子在凝聚态体系的热学、电学和纳米光学等性质中起着重要作用。然而,对单个纳米结构或晶体缺陷等的局域声子色散进行实验测量在技术上具有很大困难。非弹性中子散射、X射线散射等手段由于空间分辨率不足只能测量块体材料的声子色散,针尖增强拉曼散射等光学方法则不具有足够的动量探测范围。为了测量局域声子色散,必须同 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20分子所陈雷研究组揭示人源TRPC5通道被不同小分子所抑制的结构基础
TRPC5是受体激活的非选择性阳离子通道,属于瞬时受体电位通道(TRP)家族中的经典型亚家族(TRPC)1。TRPC5通道的激活将引起细胞膜去极化和胞质内钙浓度上升。TRPC5通道主要表达于脑组织,在肝脏、肾脏等器官中也有一定程度的分布2-4。TRPC5介导多种生理过程,与恐惧、焦虑、抑郁等情绪的产 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20深研院新材料学院在富锂锰基正极材料的阴离子氧化还原机理研究方面取得进展
锂电池作为新一代绿色储能器件已经改变了我们的生活,正极材料仍然是电池储存容量、循环寿命以及成本的瓶颈,通常具有高工作电压以及超高的可逆比容量,是开发下一代高能量密度锂离子正极材料的研究重点之一。富锂锰基层状过渡金属氧化物(aLi2MnO3.bNMC)已经被广泛的应用为研究富锂材料的模型体系。关于Li ...北京大学通知公告 本站小编 Free考研考试 2021-12-20深研院化生学院杨世和课题组在卤化钙钛矿材料制备及其钙钛矿X射线探测器成像领域取得突破性进展
近日,深圳研究生院化学生物学与生物技术学院杨世和课题组在国际知名期刊Cell的姊妹刊Matter上,发表了题为“Anaerosol-liquid-solidprocessforthegeneralsynthesisofhalideperovskitethickfilmsfordirect-conve ...北京大学通知公告 本站小编 Free考研考试 2021-12-20郭雪峰课题组与合作者设计开发氨基酸手性识别的单分子技术
氨基酸是生物功能大分子蛋白质的基本组成单位,是构成动物营养所需蛋白质的基本物质,同时也是许多药物分子的重要组成片段,在生命体中起着至关重要的作用,比如有氨基酸组成的蛋白酶具有高度专一的催化活性。因此,氨基酸的高灵敏检测与精准分析不仅仅可以加深对氨基酸在生命体内发挥作用机制的理解,同时在食品工业、天然 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20深研院新材料学院潘锋组与化学院孙俊良组联合用3D电子衍射揭示高电压钴酸锂机理在Nature Nanotechnology发表
锂电池作为新一代绿色储能器件已经改变了我们的生活,使我们用上了手机等移动通信和电动车等绿色出行。目前正在使用锂电池正极材料可分为3类,高端手机等用的钴酸锂、电动车电池用的有层状高容量但安全性不高的镍钴锰三元氧化物和高安全但容量不高的磷酸铁锂、电动自行车和充电宝用的低容量低成本低循环稳定性的尖晶石锰酸 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20深研院新材料学院在锂电池无钴层状正极材料取得重大进展
随着汽车工业逐渐向电动化转移,高性能电池的需求将大大地增加。在过去的三十年,电池技术的革新已经取得了巨大的成功,能量密度大幅提升。当前,电动化时代面临的主要挑战是电池高昂的成本。电池的成本问题主要与急速增加的原料价格有关,其中尤其是作为主要成分的钴。近年来,由于主要产地的政治动荡,人权道德等问题严峻 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20