寻找新颖拓扑结构并探索其物性是当前凝聚态物理研究的一个重点。这些拓扑结构有望为后摩尔时代电子学及其器件提供原材料。目前,人们对磁性材料中具有拓扑稳定性的实空间自旋结构,如涡旋、斯格明子、半子等,已经开展了广泛的研究。对于介电材料体系,偶极子也能在晶格自由度和电荷自由度的共同调控下发生旋转,形成拓扑稳定的极性结构。相比于磁性材料中的拓扑自旋结构,极性拓扑结构的研究进展缓慢,直到最近几年才有明显起色。制约其研究发展的重要原因有两个,一方面极性拓扑结构的形成条件更加苛刻。与自旋类似,通常情况下偶极子也倾向于平行排列形成平庸畴,而非旋转形成拓扑结构,且介电材料的各向异性通常比磁性材料更强,因此使偶极子旋转形成拓扑结构所需的驱动力也更大;除此之外,极性拓扑结构具有的能量并不稳定,如果没有非常合适的边界条件来维持,它们就会弛豫回到平庸畴结构,因此,极性拓扑结构的制备窗口和稳定存在的窗口都比较窄。另一方面,极性拓扑结构很难表征。极性拓扑结构的尺寸通常在纳米甚至亚纳米量级,且单个拓扑结构内的原子结构高度不均匀,只有当形成规则有序的阵列时,才能够被宏观表征手段探测到,否则其结构特征会被平均效应淹没。
物理学院量子材料科学中心和电子显微镜实验室高鹏课题组长期致力于低维铁电界面的研究,他们发展了对氧原子敏感的成像及定量分析技术与原位局域场技术,应用于极性拓扑体系的研究,有一系列原创性的研究成果。最近,他们与湘潭大学、浙江大学、南方科技大学等单位合作在人工氧化物超晶格PbTiO3/SrTiO3中设计产生了亚十纳米的极性涡旋—反涡旋对阵列,并且发现反涡旋存在于非本征极性的SrTiO3中,而不是铁电体PbTiO3中。
图:(a)示意图:夹在两个涡旋之间的拓扑反涡。(b) 相场模拟的(PbTiO3)n /(SrTiO3)m相图,其中n表示PbTiO3的单胞层数,m表示SrTiO3的单胞层数。不同厚度对应不同的相。其中黑色框标记的*区域对应的是反涡旋能够存在的窗口。(c) 相场模拟:当m=4和n=10时,夹在两个涡旋之间会形成比较完美的反涡旋阵列。(d) 实验:原子像。箭头是由原子像计算得到的位移矢量(近似正比于极化矢量)。
由Kosterlitz和Thouless的开创性工作可知,在Kosterlitz-Thouless相变过程中可能会形成涡旋—反涡旋对。相比于形成单个涡旋或反涡旋,这种涡旋—反涡旋对可以显著降低形成能。实际上,在超导以及铁磁系统中都观察到了这样的涡旋—反涡旋对。2016年美国伯克利的研究人员在铁电体系PbTiO3/SrTiO3超晶格中的PbTiO3层中也发现了阵列型的极性拓扑涡旋。之后国际上多个课题组对该氧化物超晶格体系开展了广泛的研究,但是,一直没有发现反涡旋的踪迹。高鹏研究团队认为原因可能是没有找到合适的生长窗口或结构表征精度不够。因此,他们首先通过系统的相场模拟构建了相图,发现反涡旋的确可能存在但是存在的窗口很狭窄。在此基础上,他们设计了合适的人工超超晶格结构,利用多种定量原子像分析方法确认了反涡旋的存在。有意思的是,反涡旋并不存在于铁电层PbTiO3中,而是存在于名义上的非极性材料SrTiO3中。图d展示了4个单胞层(1.6纳米)SrTiO3中存在反涡旋。研究团队探索了其形成机理,发现SrTiO3表现出较弱的各向异性,促进了反涡旋的形成。其形成驱动力主要是与电荷自由度相关的静电力,而与晶格自由度相关的弹性力几乎不起作用。据此,他们还预言了利用p-n、微纳加工等方式可能在纯的SrTiO3中产生反涡旋而不依赖于目前的人工氧化物超晶格。与拓扑平庸畴相比,反涡旋的介电常数增强。此外,电场和温度都可以驱动涡旋—反涡旋对与平庸相之间来回转变。
此项工作首次在非本征极性材料中实现了极性拓扑结构,得到了亚十纳米结构的极性涡旋—反涡旋对阵列,扩展了极性拓扑结构的研究范围,也进一步验证了K-T理论在极性体系的适用性。此外,也为极性反涡旋的存在给出了直接的原子尺度证据。
上述研究以“Creating polar antivortex in PbTiO3/SrTiO3 superlattice”为题发表在《自然·通讯》(Nature Communications)。北京大学物理学院量子材料科学中心研究生Adeel Abid和孙元伟、浙江大学航空航天学院研究生侯旭、湘潭大学材料科学与工程学院谭丛兵博士为论文共同一作者,湘潭大学材料科学与工程学院钟向丽教授、浙江大学航空航天学院王杰教授、南方科技大学材料科学与工程系李江宇教授、北京大学物理学院高鹏研究员为论文共同通讯作者。研究工作得到了国家重点研发计划、国家自然科学基金委、量子物质科学协同创新中心、广东省重点研发计划等的支持。
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
物理学院量子材料科学中心高鹏课题组与合作者在非极性材料中设计产生了纳米尺寸的极性拓扑反涡旋
本站小编 Free考研考试/2021-12-20
相关话题/结构 纳米 材料 浙江大学 湘潭大学
深研院新材料学院潘锋课题组在构建材料知识图谱研究方面取得进展
随着数据挖掘技术的日益成熟,将其运用于材料科学研究已逐渐成为可能。这导致材料信息学这一新兴领域的出现。经过长时间的发展,大量的材料学术文献积累了丰富的科学成果,以文本形式散布在文献中的科学知识一般仍由研究人员手动收集和分析,这通常十分耗时且难以保证信息的完整度。如果将文献中的材料科学信息表示为结构化 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20纳光电子前沿科学中心王兴军、肖云峰和龚旗煌联合课题组在纳米尺度单颗粒检测中取得重要进展
日前,北京大学纳光电子前沿科学中心王兴军课题组(信息科学技术学院电子学系)和肖云峰、龚旗煌课题组(物理学院)在微纳光学传感研究中取得重要进展。他们利用光学暗场外差干涉仪和频率变换相结合的传感新方法,将实时信号采样噪声降低了两个数量级,并成功实现了聚苯乙烯纳米微粒和单个病毒样颗粒的高灵敏度检测。光学倏 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20深研院化生学院杨震课题组利用可见光催化形式[2+2]/retro-Mannich反应构建cyclohepta[b]indole结构
近日,深圳研究生院化学生物学与生物技术学院杨震课题组在《德国应用化学》发表通讯论文,报道了可见光催化形式[2+2]/retro-Mannich反应构建cyclohepta[b]indole结构的研究工作。全碳季碳手性中心普遍存在于复杂天然产物和功能分子,具有重要的结构和功能意义。立体选择性构筑高空间 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20物理学院高鹏课题组发展电镜新技术在纳米分辨率下绘制声子色散分布图
声子在凝聚态体系的热学、电学和纳米光学等性质中起着重要作用。然而,对单个纳米结构或晶体缺陷等的局域声子色散进行实验测量在技术上具有很大困难。非弹性中子散射、X射线散射等手段由于空间分辨率不足只能测量块体材料的声子色散,针尖增强拉曼散射等光学方法则不具有足够的动量探测范围。为了测量局域声子色散,必须同 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20分子所陈雷研究组揭示人源TRPC5通道被不同小分子所抑制的结构基础
TRPC5是受体激活的非选择性阳离子通道,属于瞬时受体电位通道(TRP)家族中的经典型亚家族(TRPC)1。TRPC5通道的激活将引起细胞膜去极化和胞质内钙浓度上升。TRPC5通道主要表达于脑组织,在肝脏、肾脏等器官中也有一定程度的分布2-4。TRPC5介导多种生理过程,与恐惧、焦虑、抑郁等情绪的产 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20深研院新材料学院在富锂锰基正极材料的阴离子氧化还原机理研究方面取得进展
锂电池作为新一代绿色储能器件已经改变了我们的生活,正极材料仍然是电池储存容量、循环寿命以及成本的瓶颈,通常具有高工作电压以及超高的可逆比容量,是开发下一代高能量密度锂离子正极材料的研究重点之一。富锂锰基层状过渡金属氧化物(aLi2MnO3.bNMC)已经被广泛的应用为研究富锂材料的模型体系。关于Li ...北京大学通知公告 本站小编 Free考研考试 2021-12-20深研院化生学院杨世和课题组在卤化钙钛矿材料制备及其钙钛矿X射线探测器成像领域取得突破性进展
近日,深圳研究生院化学生物学与生物技术学院杨世和课题组在国际知名期刊Cell的姊妹刊Matter上,发表了题为“Anaerosol-liquid-solidprocessforthegeneralsynthesisofhalideperovskitethickfilmsfordirect-conve ...北京大学通知公告 本站小编 Free考研考试 2021-12-20深研院新材料学院潘锋组与化学院孙俊良组联合用3D电子衍射揭示高电压钴酸锂机理在Nature Nanotechnology发表
锂电池作为新一代绿色储能器件已经改变了我们的生活,使我们用上了手机等移动通信和电动车等绿色出行。目前正在使用锂电池正极材料可分为3类,高端手机等用的钴酸锂、电动车电池用的有层状高容量但安全性不高的镍钴锰三元氧化物和高安全但容量不高的磷酸铁锂、电动自行车和充电宝用的低容量低成本低循环稳定性的尖晶石锰酸 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20深研院新材料学院在锂电池无钴层状正极材料取得重大进展
随着汽车工业逐渐向电动化转移,高性能电池的需求将大大地增加。在过去的三十年,电池技术的革新已经取得了巨大的成功,能量密度大幅提升。当前,电动化时代面临的主要挑战是电池高昂的成本。电池的成本问题主要与急速增加的原料价格有关,其中尤其是作为主要成分的钴。近年来,由于主要产地的政治动荡,人权道德等问题严峻 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20新材料学院基于材料基因大数据研发的“未名材料解析系统”投入应用服务
“一代材料、一代产业”,材料研制周期长、检测分析困难等问题一直限制着新材料的研发与应用。2016年国家启动了材料基因工程重点研发计划目的是用新的研究范式(高通量计算、高通量制备、高通量检测及构建材料数据库)加速新材料研发速度。北京大学深圳研究生院新材料学院潘锋教授于2016年联合多所高校、研究机构和 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20