锂电池作为新一代绿色储能器件已经改变了我们的生活,正极材料仍然是电池储存容量、循环寿命以及成本的瓶颈,通常具有高工作电压以及超高的可逆比容量,是开发下一代高能量密度锂离子正极材料的研究重点之一。富锂锰基层状过渡金属氧化物(aLi2MnO3.bNMC)已经被广泛的应用为研究富锂材料的模型体系。关于Li2MnO3循环机理的存在争论,晶格氧的氧化还原反应的说法受到较广泛的认可,但同时存在着Mn(III/IV)过度氧化模型。近年来,由于富锂正极材料在电化学循环过程中,晶格氧的可逆氧化还原反应与不可逆的氧缺失反应之间彼此纠缠,相互并行的,因此很难被区别研究。这在科学上限制了对晶格氧氧化还原反应机理的基础认知。现在是时候重新思考富锂材料是否是晶格氧的可逆氧化还原反应的必要条件。
北京大学深圳研究生院新材料学院潘锋教授与劳伦斯伯克利国家实验室杨万里研究员、中科院物理所李泓研究员、斯坦福大学 Thomas P. Devereaux教授等研究团队合作,首先通过利用同步辐射软X射线光谱技术对富锂锰基正极的“原初”Li2MnO3及表面Mn和O氧化还原反应的定量化分析,阐明了Mn(III/IV)氧化还原反应在Li2MnO3电化学充放电过程中占主导地位,而初始充电平台来自于氧释放和碳酸盐分解的表面反应。在任何电化学阶段都不涉及晶格氧氧化还原反应。最终澄清了长期以来关于Li2MnO3循环机理的争论。相关成果近日发表于国际知名学术杂志Cell的姐妹刊《焦耳》(Joule 5, 1-23, 2021,doi: 10.1016/j.joule.2021.02.004,影响因子27)上。
在锂-二氧化碳/空气电池中,高活性的Li2MnO-3表面可以实现高效的催化反应。Li2MnO3中晶格氧氧化还原反应的缺失,对富锂过渡金属氧化合物中晶格氧的氧化还原反应机理的理解提出了质疑。因此,研究团队通过对比富锂材料、传统层状材料(NCM111,LiCoO2,LiNiO2)和Li2MnO3晶格氧电子态,发现在富锂材料和传统层状材料中观察到的相类似的基于晶格氧氧化还原反应的光谱特征,而Li2MnO3则不同。由此可以得出,晶格氧的氧化还原反应实际上是传统层状材料的固有特性,而富锂的代表材料Li2MnO3则根本不存在可逆的晶格氧氧化还原。这些发现为理解和控制晶格氧氧化还原反应提供了指导,并为使用富锂材料作为催化剂提供了机会。
图1.不同充放电态Li2MnO3的共振非弹性散射图谱结果
研究团队利用共振非弹性X射线散射图谱(mRIXS)技术表征不同充放电态下Li2MnO3晶格氧的电子态信息。mRIXS是一种新兴的、基于同步辐射光源的光谱表征技术,是研究物质电子结构最强有力的工具之一。将mRIXS应用于电池电极材料的表征,可精准探测不同氧化还原态下的晶格氧电子态,从而量化追溯晶格氧在电化学循环中的演进过程。实验结果(图1)表明在Li2MnO3的晶格氧电子态在充放电过程中并没有显著变化,揭示了在Li2MnO3的任何电化学阶段都没有发生晶格氧的可逆氧化还原反应。
图2.基于软X射线光谱对Mn氧化还原反应定量化表征
随之出现的是一个关键的问题:在没有晶格氧氧化还原反应参与的情况下,Li2MnO3如何具有电化学活性的可逆充放电容量。对此,该研究团队通过对Li2MnO3电极材料中表面以及体相中锰元素氧化还原反应的定量化表征,精确探测不同电化学充放电态下的锰氧化态,进一步确认了Mn(III/IV)氧化还原反应在除第一圈充电之外的Li2MnO3充放电过程中占据主导地位(图2)。
通过对富锂材料、传统层状材料(NCM111,LiCoO2,LiNiO2)和Li2MnO3晶格氧电子态对比(图3)研究表明富锂化合物中的晶格氧氧化还原反应与传统非富锂层状化合物中的晶格氧氧化还原反应性质相同;然而,Li2MnO3并不存在可逆的晶格氧氧化还原反应。晶格氧氧化还原反应是传统层状材料的固有性质,“富锂”结构更多是调控不可逆氧释放反应进行。
图3.不同材料晶格氧氧化还原反应共振非弹性散射图谱对比
该研究工作为进一步探究晶格氧氧化还原反应的机理奠定了科学基础,同时也展现了高精度定量化的分析表征方法对于揭示材料内在物理化学过程的重要性。
北京大学深圳研究生院新材料学院博士后卓增庆博士、天津师范大学代克化教授、劳伦斯伯克利国家实验室乔瑞敏博士、中科院物理所汪锐博士是该论文共同第一作者,潘锋与杨万里、李泓、Thomas P. Devereaux为论文共同通讯作者。该研究工作得到了国家材料基因组重点研发计划的支持。
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
深研院新材料学院在富锂锰基正极材料的阴离子氧化还原机理研究方面取得进展
本站小编 Free考研考试/2021-12-20
相关话题/材料 电子 光谱 晶格 博士
地空学院邹鸿、宗秋刚团队“中地球轨道中国导航卫星能量电子探测仪器包”研究成果被选为Earth and Planetary Physics封面文章
EarthandPlanetaryPhysics于2021年3月1日在线出版了北京大学地球与空间科学学院邹鸿、宗秋刚团队撰写的第5卷第2期封面文章“EnergeticelectrondetectionpackagesonboardChinesenavigationsatellitesinMEO”(如 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20深研院化生学院杨世和课题组在卤化钙钛矿材料制备及其钙钛矿X射线探测器成像领域取得突破性进展
近日,深圳研究生院化学生物学与生物技术学院杨世和课题组在国际知名期刊Cell的姊妹刊Matter上,发表了题为“Anaerosol-liquid-solidprocessforthegeneralsynthesisofhalideperovskitethickfilmsfordirect-conve ...北京大学通知公告 本站小编 Free考研考试 2021-12-20深研院新材料学院潘锋组与化学院孙俊良组联合用3D电子衍射揭示高电压钴酸锂机理在Nature Nanotechnology发表
锂电池作为新一代绿色储能器件已经改变了我们的生活,使我们用上了手机等移动通信和电动车等绿色出行。目前正在使用锂电池正极材料可分为3类,高端手机等用的钴酸锂、电动车电池用的有层状高容量但安全性不高的镍钴锰三元氧化物和高安全但容量不高的磷酸铁锂、电动自行车和充电宝用的低容量低成本低循环稳定性的尖晶石锰酸 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20深研院新材料学院在锂电池无钴层状正极材料取得重大进展
随着汽车工业逐渐向电动化转移,高性能电池的需求将大大地增加。在过去的三十年,电池技术的革新已经取得了巨大的成功,能量密度大幅提升。当前,电动化时代面临的主要挑战是电池高昂的成本。电池的成本问题主要与急速增加的原料价格有关,其中尤其是作为主要成分的钴。近年来,由于主要产地的政治动荡,人权道德等问题严峻 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20新材料学院基于材料基因大数据研发的“未名材料解析系统”投入应用服务
“一代材料、一代产业”,材料研制周期长、检测分析困难等问题一直限制着新材料的研发与应用。2016年国家启动了材料基因工程重点研发计划目的是用新的研究范式(高通量计算、高通量制备、高通量检测及构建材料数据库)加速新材料研发速度。北京大学深圳研究生院新材料学院潘锋教授于2016年联合多所高校、研究机构和 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20深研院新材料学院在锂离子电池正极材料的极化子现象相关机理研究方面取得系统性进展
作为一种高能量密度储能器件,锂离子电池不仅已经广泛应用于消费电子领域(如笔记本电脑、智能手机),而且也适合用于电动车中的动力电池。正极是锂电池最为重要的组成部分。在正极材料的研究中,当电子在空间上局域分布并与晶格耦合将形成极化子,极化子现象近些年逐渐引起人们更多关注,主要是因为其减弱电子导电性,不利 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20物理学院方哲宇团队提出自由电子束调控金属/介质复合异质结构谷极化新方法
近日,北京大学物理学院方哲宇团队在NatureCommunications上发表了题为“Deepsubwavelengthcontrolofvalleypolarizedcathodoluminescenceinh-BN/WSe2/h-BNheterostructure”的研究论文,报道了一种利用超 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20新材料学院有机光电团队在《自然·通讯》发文展示首个由三相交流电直接驱动的电致发光器件
柔性电子近年来引起了全世界的研究热潮,其中电致发光器件在柔性电子中具有广泛的应用。然而目前的电致发光器件大多功能单一,封闭的器件结构导致很难集成传感功能以满足物联网时代对发光器件智能性的要求。除此之外,电致发光器件大多采用直流电或单相交流电驱动,这样的器件接入到三相电网中需要复杂的后端电路,额外消耗 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20新材料学院潘锋课题组对低成本电池正极材料MnO2的研究与发展进行总结展望
近年来,MnO2由于成本低廉、高理论容量等优点被作为多种离子电池正极宿主材料而广泛研究,包括应用在Li+、Na+、K+、Zn2+、Mg2+等正极材料,但MnO2材料低的电子/离子电导率、低的可逆放电容量、缓慢的扩散动力学和较差的循环稳定性,限制了其产业化应用潜力。为解决这些问题,研究人员提出了多种性 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20深研院新材料学院发现微波“靶向”快速制备锂电池层状材料机理
材料合成是现代材料科学的基石,而如何在很短时间尺度内高效制备出具有特定结构的材料长久以来一直是材料科学家追求的目标。众所周知,绝大多数合成反应都需要从外部获取能量来克服反应势垒,而传统的能量供给方式包括燃烧和电加热等,这些方式主要通过热传导将能量从热源传递给制备的环境,再由环境传递到目标反应物,因此 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20