材料合成是现代材料科学的基石,而如何在很短时间尺度内高效制备出具有特定结构的材料长久以来一直是材料科学家追求的目标。众所周知,绝大多数合成反应都需要从外部获取能量来克服反应势垒,而传统的能量供给方式包括燃烧和电加热等,这些方式主要通过热传导将能量从热源传递给制备的环境,再由环境传递到目标反应物,因此该传递过程中由于热振动的无序性会造成能量的大量浪费,且会引入各自副反应。理想的能量传递方式应该是具有“靶向”性的,可以精确使得目标反应物直接接受从发射源的能量引发精准快速化学反应,实现能量的有效利用。
以三元Li(NI/Co/Mn)O2为代表的层状氧化物锂电池正极材料,具有独特的锂离子夹层化学特性,已成为目前锂离子电池中最重要的正极材料体系。当前,无论是产业界还是实验室,广泛采用高温固相法作为合成层状氧化物正极材料的主流方。这一方法需要在750-1000℃的高温下进行长时间的烧结(>10小时),往往带来巨大的能耗、环境污染等问题,并造成较高的生成成本。因此,开发新型的低能耗、快速的合成方法,对于降低锂锂离子电池的生成成本、激发未来的储能市场都具有重要的意义。
图1 原位同步辐射X射线技术追踪层状正极材料的超快微波水热合成过程
近日,北京大学深圳研究生院新材料学院潘锋教授课题组和美国国家同步辐射光源NSLS II白健明教授、Brookhaven国家实验室王峰教授、美国陆军实验室许康教授合作,开发了一种全新高效的微波水热合成方法。如图1所示,通过原位同步辐射XRD追踪了层状正极材料Li(Ni1/3Mn1/3Co1/3)O2 (NMC333)的微波水热合成过程,发现氢氧化物前驱体在160℃的低温下极短时间内(4分钟)就转变为层状氧化物产物。通过与原位固相合成实验、原位水热合成实验进行对比,发现了微波水热的反应速率(1.819 min-1)比固相合成(0.091min-1)和水热合成(0.096min-1)大一个数量级。研究人员通过进一步的原位实验详细分析了反应中各组分的微波吸收能力,成功揭示了超快微波合成背后的靶向能量传输引发化学反应的机理:微波能量可以通过与极化分子水合锂离子及带有未成对自旋电子的过渡金属离子的共振相互作用,精确地将能量传递到反应物中,提升反应物的内部动能而对环境反应温度影响不大,从而加快了固液界面处的锂离子插入速率和晶体的相结构演化,最终实现了层状正极材料的低温快速合成。该工作近日发表在Science子刊Science Advances(DOI:10.1126/sciadv.abd9472,影响因子为13.116)上。
图2 超快微波靶向能量传输引发化学反应的机理
该工作是在潘锋、白健明、王峰和许康的共同指导下,由第一作者研究员张明建及相关人员共同努力一起完成。该工作得到了国家材料基因工程重点研发计划、广东省创新团队项目的大力支持。
文章链接:https://advances.sciencemag.org/content/6/51/eabd9472
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
深研院新材料学院发现微波“靶向”快速制备锂电池层状材料机理
本站小编 Free考研考试/2021-12-20
相关话题/材料 微波 工作 环境 实验室
《化学研究评述》报道工学院占肖卫课题组稠环电子受体的系统性工作
北京大学工学院占肖卫课题组长期致力于有机太阳能电池非富勒烯受体材料的研究,自2015年原创性地提出“稠环电子受体”这一概念以来,取得了一系列重要研究进展,相关成果总结发表在《化学研究评述》(AccountsofChemicalResearch)上。1995年以来,富勒烯衍生物占据有机太阳能电池受体材 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20深研院新材料学院发现调控质子传输能提升水系锌离子电池能量密度
水系锌离子电池是未来高安全的储能和车用动力电池。微酸性水系以MnO2为正极的锌二次电池(Zn-MnO2)有着良好的安全性、较高的元素丰度和不错的环境相容性,使其成为大规模储能领域下一代电池的候选之一,但由于其电池内部反应的复杂性,其储能机制在当今科学界一直存在争论。近日,北京大学深圳研究生院的潘锋教 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20生命科学学院钟上威实验室揭示植物机械碰触“记忆”形成的分子机制
2020年11月27日,国际著名学术期刊ScienceAdvances发表了北京大学生命科学学院钟上威研究员课题组题为“Touch-inducedseedlingmorphologicalchangesaredeterminedbyethylene-regulatedpectindegradatio ...北京大学通知公告 本站小编 Free考研考试 2021-12-20北大深研院新材料学院与中科院化学所合作发现新型“金属氧立方”团簇
“一代材料、一代产业”。新材料是电子信息、新能源、生物医药、航天航空等新兴战略产业的基础。就像生命体中基因研究类似,新材料可以解构为结构基元、相互链接和作用、排序与对称性等“材料基因”。对新型的结构基元和团簇的探索与发现是材料基因研究的基础。中国科学院化学所与北京大学深圳研究生院新材料学院联合团队( ...北京大学通知公告 本站小编 Free考研考试 2021-12-20汤富酬课题组与付卫课题组在Cancer Cell发文合作揭示结直肠癌肿瘤微环境细胞的遗传变异
肿瘤微环境是由肿瘤组织中的各种非上皮细胞以及胞外基质共同组成的,其中非上皮细胞主要包括肿瘤浸润的各种免疫细胞、成纤维细胞以及血管内皮细胞等,而肿瘤浸润的免疫细胞又包括T细胞、B细胞、NK细胞和巨噬细胞等。这些细胞通过与癌上皮细胞之间复杂的相互作用影响了肿瘤的发生和进展。近年来单细胞转录组测序等技术已 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20北京大学工学院夏定国课题组在富锂正极材料研究方面取得系列进展
研究高容量富锂正极材料对于发展高能量密度、低成本动力电池具有重要促进作用。如何进一步抑制氧的释放、提高安全性是这类高比容量正极材料商业化应用的关键。北京大学工学院夏定国课题组对富锂正极材料开展多年的研究,取得新的进展。主要工作包括:研究氧的局部对称性与阴离子氧化还原稳定性的关系,通过层内无序实现氧的 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20深研院新材料学院在知名期刊发表有关电池界面结构化学研究的教程类综述性文章
正极材料是提高锂离子电池能力密度和安全性能的关键。在大量被报道的锂离子电池正极材料中,橄榄石结构的磷酸铁锂(LiFePO4)、尖晶石结构的锰酸锂(LiMn2O4)和层状结构的过渡金属氧化物(LiMO2,M=Mn或/和Co或/和Ni)广泛应用在便携式电子设备、电动交通工具以及大规模储能等领域。这些产业 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20新材料学院在锂电池锰基尖晶石正极材料方面取得进展
正极材料通常被认为是决定锂离子电池性能的决定性因素。理想情况下,正极应在较宽的工作温度范围内提供高比容量、高工作电压、低成本、优越的安全性和长循环寿命,以满足要求诸如混合动力汽车、嵌入式混合动力汽车和纯电动汽车等应用的要求。在已有的正极材料中,锰基尖晶石型锂锰氧化物LiMn2O4(LMO)由于其高电 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20《自然·通讯》报道量子中心张焱课题组及合作者在1T-TaS2材料中发现的能带绝缘体到莫特绝缘体相变
过渡金属二硫组化合物是一大类被广泛研究的层状二维材料,其不仅在工业上有广阔的的应用前景,同时也蕴含丰富的凝聚态物理现象。1T-TaS2是一个经典的例子。高温时,1T-TaS2处于金属态;随着降温,1T-TaS2经历多个电荷密度波(CDW)相变,并最终在低温下进入绝缘态。有关1T-TaS2绝缘态的成因 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20深研院新材料学院在复合膜调控水系锌离子电池实现超长循环取得突破
水系锌离子电池具有高安全性、低成本等优势,因而成为下一代具有产业化前景的储能技术之一。但水系锌离子电池商业化应用面临锌负极上锌枝晶生长、电解液析氢、碱式硫酸锌副产物生成等问题。通常有机涂层可以有效阻止阴离子、自由水与锌负极接触,隔离阴离子可以有效缓解锌离子沉积过程中阴离子聚集引起的空间电场不均问题, ...北京大学通知公告 本站小编 Free考研考试 2021-12-20