删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

应用驱动的大数据与人工智能融合平台建设

本站小编 Free考研考试/2022-01-02

闂傚倸鍊峰ù鍥敋瑜忛埀顒佺▓閺呯娀銆佸▎鎾冲唨妞ゆ挾鍋熼悰銉╂⒑閸︻厼鍔嬫い銊ユ噽婢规洘绻濆顓犲幍闂佸憡鎸嗛崨顓狀偧闂備焦濞婇弨閬嶅垂閸洖桅闁告洦鍨扮粻娑㈡煕閹捐尙鍔嶉柛瀣斿喚娓婚柕鍫濈箳閸掓壆鈧鍠栨晶搴ㄥ箲閵忕姭鏀介悗锝庝簽閸旓箑顪冮妶鍡楃瑨閻庢凹鍓涚划濠氬Ψ閿旇桨绨婚梺鍝勫暊閸嬫捇鏌涙惔鈥虫毐闁伙絿鍏樻俊鐑藉Ψ閵忊剝鏉告俊鐐€栧濠氭偤閺傚簱鏋旀俊顖涚湽娴滄粓鏌ㄩ弬鍨挃闁靛棙顨婂濠氬磼濮橆兘鍋撻悜鑺ュ€块柨鏃堟暜閸嬫挾绮☉妯诲櫧闁活厽鐟╅弻鐔兼倻濮楀棙鐣烽梺绋垮椤ㄥ棝濡甸崟顖氭闁割煈鍠掗幐鍐⒑閸涘⿴娈曠€光偓閹间礁绠栨俊銈傚亾闁宠棄顦埢搴b偓锝庡墰缁愭姊绘担鍝ワ紞缂侇噮鍨拌灋闁告劦鍠栭拑鐔哥箾閹存瑥鐏╅崬顖炴⒑闂堟稓绠氶柛鎾寸箞閹敻鏁冮埀顒勫煘閹达附鍊烽柟缁樺笚閸婎垶鎮楅崗澶婁壕闂佸綊妫跨粈渚€鎷戦悢鍏肩厪闁割偅绻嶅Σ鍝ョ磼閻欐瑥娲﹂悡鏇熴亜椤撶喎鐏ラ柡瀣枑缁绘盯宕煎┑鍫濈厽濠殿喖锕ㄥ▍锝囨閹烘嚦鐔兼偂鎼存ɑ瀚涢梻鍌欒兌鏋紒銊︽そ瀹曟劕螖閸愩劌鐏婂┑鐐叉閸旀洜娆㈤悙鐑樼厵闂侇叏绠戞晶鐗堛亜閺冣偓鐢€愁潖濞差亝鍤冮柍鍦亾鐎氭盯姊洪崨濠冨鞍闁烩晩鍨堕悰顔界節閸屾鏂€闁诲函缍嗛崑鍡涘储娴犲鈷戠紓浣光棨椤忓嫷鍤曢柤鎼佹涧缁剁偤鏌涢弴銊ュ箰闁稿鎸鹃幉鎾礋椤掑偆妲伴梻浣瑰濞插繘宕规禒瀣瀬闁规壆澧楅崐椋庣棯閻楀煫顏呯妤e啯鐓ユ繝闈涙椤庢霉濠婂啫鈷旂紒杈ㄥ浮楠炲鈧綆鍓涜ⅵ闂備礁鎼惉濂稿窗閹邦兗缂氶煫鍥ㄦ煟閸嬪懘鏌涢幇銊︽珦闁逞屽墮缁夋挳鈥旈崘顔嘉ч柛鈩兠弳妤呮⒑绾懏鐝柟鐟版处娣囧﹪骞橀鑲╊唺闂佽鎯岄崢浠嬪磽閻㈠憡鈷戦柟顖嗗嫮顩伴梺绋款儏濡繃淇婄€涙ḿ绡€闁稿本顨嗛弬鈧梻浣虹帛閿曗晠宕戦崟顒傤洸濡わ絽鍟埛鎴︽煕濞戞﹫鍔熼柍钘夘樀閺岋絾骞婇柛鏃€鍨甸锝夊蓟閵夘喗鏅㈤梺鍛婃处閸撴瑩鍩€椤掆偓閻栧ジ寮婚敐澶婄疀妞ゆ挾鍋熺粊鐑芥⒑閹惰姤鏁辨慨濠咁潐缁岃鲸绻濋崟顏呭媰闂佺ǹ鏈懝楣冿綖閸ヮ剚鈷戦柛婵嗗閻掕法绱掔紒妯肩畵闁伙綁鏀辩缓浠嬪礈閸欏娅囬梻渚€娼х换鎺撴叏鐎靛摜涓嶉柟娈垮枤绾句粙鏌涚仦鍓ф噮闁告柨绉甸妵鍕Ω閵夛箑娈楅柦妯荤箞濮婂宕奸悢鎭掆偓鎺楁煛閸☆參妾柟渚垮妼椤粓宕卞Δ鈧导搴g磽娴g懓鏁剧紒韫矙濠€渚€姊洪幐搴g畵閻庢凹鍨堕、妤呮偄鐠佸灝缍婇幃鈩冩償閵忕姵鐏庢繝娈垮枛閿曘儱顪冮挊澶屾殾闁靛⿵濡囩弧鈧梺绋挎湰缁酣骞婇崱妯肩瘈缁剧増蓱椤﹪鏌涚€n亝鍣介柟骞垮灲瀹曞ジ濡疯缁侊箓姊洪崷顓烆暭婵犮垺锕㈤弻瀣炊椤掍胶鍘搁梺鎼炲劗閺呮盯寮搁幋鐐电闁告侗鍠氭晶顒傜磼缂佹ḿ鈯曟繛鐓庣箻瀹曟粏顦寸悮锝嗙節閻㈤潧浠滈柟閿嬪灩缁辩偞鎷呴崫銉︽闂佺偨鍎查弸濂稿醇椤忓牊鐓曟い鎰╁€曢弸搴ㄦ煃瑜滈崜娑㈠极婵犳艾钃熼柨婵嗩槸椤懘鏌eΟ鍝勬倎缂侇喚鏁诲娲箹閻愭祴鍋撻幇鏉跨;闁瑰墽绮埛鎺懨归敐鍫綈闁稿濞€閺屾盯寮捄銊愩倝鏌熼獮鍨伈鐎规洜鍠栭、姗€鎮欓懠顑垮枈闂備浇宕垫慨鏉懨洪妶鍜佸殨妞ゆ帒瀚猾宥夋煕鐏炵虎娈斿ù婊堢畺閺屻劌鈹戦崱娑扁偓妤€顭胯閸楁娊寮婚妸銉㈡闁惧浚鍋勯锟�
547闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗ù锝夋交閼板潡姊洪鈧粔鏌ュ焵椤掆偓閸婂湱绮嬮幒鏂哄亾閿濆簼绨介柨娑欑洴濮婃椽鎮烽弶搴撴寖缂備緡鍣崹鍫曞春濞戙垹绠虫俊銈勮兌閸橀亶姊洪崫鍕妞ゃ劌妫楅埢宥夊川鐎涙ḿ鍘介棅顐㈡祫缁插ジ鏌囬鐐寸厸鐎光偓鐎n剙鍩岄柧缁樼墵閺屽秷顧侀柛鎾跺枛瀵粯绻濋崶銊︽珳婵犮垼娉涢敃锕傛偪閸ヮ剚鈷戦悷娆忓缁€鍐┿亜閺囧棗鎳愰惌鍡涙煕閹般劍鏉哄ù婊勭矒閻擃偊宕堕妸锕€闉嶅銈冨劜缁捇寮婚敐澶婄閻庨潧鎲¢崚娑樷攽椤旂》鏀绘俊鐐舵閻e嘲螖閸涱厾顦ч梺鍏肩ゴ閺呮盯宕甸幒妤佲拻濞达絽鎲¢幉鎼佹煕閿濆啫鍔︾€规洘鍨垮畷鐔碱敍濞戞ü鎮i梻浣虹帛閸ㄥ吋鎱ㄩ妶澶婄柧闁归棿鐒﹂悡銉╂煟閺囩偛鈧湱鈧熬鎷�1130缂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕闁芥ɑ绻冮妵鍕冀閵娧呯厒闂佹椿鍘介幑鍥蓟閿濆顫呴柕蹇婃櫆濮e矂姊虹粙娆惧剱闁圭懓娲ら悾鐤亹閹烘繃鏅濋梺鎸庣箓濞诧箓顢樻繝姘拻濞撴埃鍋撻柍褜鍓涢崑娑㈡嚐椤栨稒娅犻柛娆忣槶娴滄粍銇勯幇鈺佺労婵″弶妞介弻娑㈡偐鐠囇冧紣濡炪倖鎸搁崥瀣嚗閸曨剛绡€闁告劦鍘鹃崣鎴︽⒒閸屾瑧绐旈柍褜鍓涢崑娑㈡嚐椤栨稒娅犻柟缁㈠枟閻撴盯鎮橀悙鐧昏鏅堕懠顑藉亾閸偅绶查悗姘煎櫍閸┾偓妞ゆ帒锕︾粔闈浢瑰⿰鍕煉闁挎繄鍋為幆鏃堝煢閳ь剟寮ㄦ禒瀣厽闁归偊鍨伴惃鍝勵熆瑜庨惄顖炲蓟濞戙垹惟闁靛/鍌濇闂備椒绱徊鍧楀礂濮椻偓瀵偊骞樼紒妯轰汗闂佽偐鈷堥崜锕€危娴煎瓨鐓熼柣鏂挎憸閻﹦绱掔紒妯虹闁告帗甯掗埢搴ㄥ箻瀹曞洤鈧偤姊洪崘鍙夋儓闁哥喍鍗抽弫宥呪堪閸曨厾鐦堥梺闈涢獜缁插墽娑垫ィ鍐╃叆闁哄浂浜顕€鏌¢崨顐㈠姦婵﹦绮幏鍛村川婵犲倹娈橀梺鐓庣仌閸ャ劎鍘辨繝鐢靛Т閸熺増鏅舵潏鈺冪=闁稿本绋掑畷宀勬煙缁嬪尅鏀荤紒鏃傚枛閸╋繝宕掑☉杈棃闁诲氦顫夊ú锔界濠靛绠柛娑卞灡閸犲棝鏌涢弴銊ュ箺鐞氭瑩姊婚崒姘偓椋庣矆娴i潻鑰块梺顒€绉撮崒銊ф喐閺冨牆绠栨繛宸簻鎯熼梺瀹犳〃閼冲爼顢欓崶顒佲拺闁告挻褰冩禍婵囩箾閸欏澧甸柟顔惧仱瀹曞綊顢曢悩杈╃泿闂備胶鎳撻顓㈠磻濞戙埄鏁嬫繝濠傛噽绾剧厧霉閿濆懏鎯堟い锝呫偢閺屾洟宕惰椤忣厽銇勯姀鈩冪濠殿喒鍋撻梺瀹犳〃缁€浣圭珶婢舵劖鈷掑ù锝囨嚀椤曟粎绱掔€n偄娴€规洘绻傞埢搴ㄥ箻鐠鸿櫣銈﹂梺璇插嚱缂嶅棝宕抽鈧顐㈩吋閸℃瑧鐦堟繝鐢靛Т閸婅鍒婇崗闂寸箚闁哄被鍎查弫杈╃磼缂佹ḿ绠為柟顔荤矙濡啫鈽夊Δ浣稿闂傚倷鐒﹂幃鍫曞礉瀹€鈧槐鐐寸節閸屻倕娈ㄥ銈嗗姂閸婃鎯屽▎鎰箚妞ゆ劑鍊栭弳鈺呮煕鎼存稑鈧骞戦姀鐘斀閻庯綆浜為崐鐐烘⒑闂堟胆褰掑磿閺屻儺鏁囨繛宸簼閳锋垿鏌涘┑鍡楊伌婵″弶鎮傞弻锝呂旀担铏圭厜閻庤娲橀崹鍧楃嵁閹烘嚦鏃堝焵椤掑嫬瑙︾憸鐗堝笚閻撴盯鏌涢幇鈺佸濠⒀勭洴閺岋綁骞樺畷鍥╊啋闂佸搫鏈惄顖炲春閸曨垰绀冮柍鍝勫枤濡茬兘姊绘担鍛靛湱鎹㈤幇鐗堝剶闁兼祴鏅滈~鏇㈡煙閻戞﹩娈㈤柡浣革躬閺屾稖绠涢幙鍐┬︽繛瀛樼矒缁犳牠骞冨ú顏勭鐎广儱妫涢妶鏉款渻閵堝骸浜滄い锔炬暬閻涱噣宕卞☉妯活棟闁圭厧鐡ㄩ幐濠氾綖瀹ュ鈷戦柛锔诲幖閸斿鏌涢妸銊︾彧缂佹梻鍠栧鎾偄閾忚鍟庨梺鍝勵槸閻楀棙鏅舵禒瀣畺濠靛倸鎲¢悡娑㈡煕濠娾偓缁€浣圭濠婂牆纭€闂侇剙绉甸悡鏇熴亜閹邦喖孝闁告梹绮撻弻锝夊箻鐎涙ḿ顦伴梺鍝勭灱閸犳牠骞冨⿰鍏剧喓鎷犻弻銉р偓娲⒒娴e懙褰掝敄閸ャ劎绠鹃柍褜鍓熼弻锛勪沪閻e睗銉︺亜瑜岀欢姘跺蓟濞戞粎鐤€闁哄啫鍊堕埀顒佸笚缁绘盯宕遍幇顒備患濡炪値鍋呯换鍕箲閸曨個娲敂閸滃啰鑸瑰┑鐘茬棄閺夊簱鍋撹瀵板﹥绂掔€n亞鏌堝銈嗙墱閸嬫稓绮婚悩铏弿婵☆垵顕ч。鎶芥煕鐎n偅宕岄柣娑卞櫍瀹曞綊顢欓悡搴經闂傚倷绀侀幗婊堝窗閹惧绠鹃柍褜鍓涢埀顒冾潐濞叉﹢宕归崸妤冨祦婵☆垰鐨烽崑鎾斥槈濞咁収浜、鎾诲箻缂佹ǚ鎷虹紓鍌欑劍閿氶柣蹇ョ畵閺屻劌顫濋懜鐢靛帗閻熸粍绮撳畷婊冣槈閵忕姷锛涢梺缁樻⒒閸樠囨倿閸偁浜滈柟鐑樺灥閺嬨倖绻涢崗鐓庡闁哄瞼鍠栭、娆撴嚃閳轰胶鍘介柣搴ゎ潐濞叉ê煤閻旂鈧礁鈽夐姀鈥斥偓鐑芥煠绾板崬澧┑顕嗛檮娣囧﹪鎮欓鍕ㄥ亾閺嶎厼鍨傚┑鍌溓圭壕鍨攽閻樺疇澹樼紒鈧崒鐐村€堕柣鎰緲鐎氬骸霉濠婂嫮鐭掗柡宀€鍠栭獮鍡氼槾闁圭晫濞€閺屾稒绻濋崘銊ヮ潚闂佸搫鐬奸崰鏍€佸▎鎾村殐闁宠桨鑳堕崢浠嬫煟鎼淬値娼愭繛鑼枑缁傚秹宕奸弴鐘茬ウ闂佹悶鍎洪崜娆愬劔闂備線娼чˇ顓㈠磹閺団懞澶婎潩椤戣姤鏂€闂佺粯鍔橀崺鏍亹瑜忕槐鎺楁嚑椤掆偓娴滃墽绱掗崒姘毙ч柟宕囧仱婵$柉顧佹繛鏉戝濮婃椽骞愭惔銏紩闂佺ǹ顑嗛幑鍥涙担鐟扮窞闁归偊鍘鹃崢閬嶆椤愩垺澶勬繛鍙夌墱閺侇噣宕奸弴鐔哄幍闂佺ǹ绻愰崥瀣磹閹扮増鐓涢悘鐐垫櫕鍟稿銇卞倻绐旈柡灞剧缁犳盯寮崒妤侇潔闂傚倸娲らˇ鐢稿蓟濞戙垹唯妞ゆ梻鍘ч~鈺冪磼閻愵剙鍔ら柕鍫熸倐瀵寮撮悢铏圭槇闂婎偄娲﹀ú婊堝汲閻樺樊娓婚柕鍫濇缁€澶婎渻鐎涙ɑ鍊愭鐐茬墦婵℃悂濡锋惔锝呮灁缂侇喗鐟╁畷褰掝敊绾拌鲸缍嶉梻鍌氬€烽懗鑸电仚濡炪倖鍨靛Λ婵嬬嵁閹邦厾绡€婵﹩鍓涢鍡涙⒑閸涘﹣绶遍柛銊╀憾瀹曚即宕卞☉娆戝幈闂佸搫娲㈤崝灞炬櫠娴煎瓨鐓涢柛鈩兠崫鐑樻叏婵犲嫮甯涢柟宄版嚇瀹曨偊宕熼锛勫笡闂佽瀛╅鏍窗濡ゅ懎纾垮┑鍌溓规闂佸湱澧楀妯肩矆閸愨斂浜滈煫鍥ㄦ尰椤ョ姴顭跨捄鍝勵仾濞e洤锕俊鎯扮疀閺囩偛鐓傞梻浣告憸閸c儵宕圭捄铏规殾闁硅揪闄勯崑鎰磽娴h疮缂氶柛姗€浜跺娲棘閵夛附鐝旈梺鍝ュ櫏閸嬪懘骞堥妸鈺佺劦妞ゆ帒瀚埛鎴犵磼鐎n偒鍎ラ柛搴㈠姍閺岀喓绮欏▎鍓у悑濡ょ姷鍋涚换妯虹暦閵娧€鍋撳☉娅亝绂掗幆褜娓婚柕鍫濇婢ь剟鏌ら悷鏉库挃缂侇喖顭烽獮瀣晜鐟欙絾瀚藉┑鐐舵彧缁蹭粙骞夐敓鐘茬畾闁割偁鍎查悡鏇炩攽閻樻彃顎愰柛锔诲幖瀵煡姊绘笟鈧ḿ褏鎹㈤崼銉ョ9闁哄洢鍨洪崐鍧楁煕椤垵浜栧ù婊勭矒閺岀喓鈧數枪娴犳粍銇勯弴鐔虹煂缂佽鲸甯楅幏鍛喆閸曨厼鍤掓俊鐐€ら崣鈧繛澶嬫礋楠炲骞橀鑲╊槹濡炪倖宸婚崑鎾剁棯閻愵剙鈻曢柟顔筋殔閳绘捇宕归鐣屼壕闂備浇妗ㄧ粈渚€鈥﹂悜钘壩ュù锝囩《濡插牊淇婇娑氱煂闁哥姴閰i幃楣冨焺閸愯法鐭楁繛杈剧到婢瑰﹤螞濠婂嫮绡€闁汇垽娼ф禒鈺呮煙濞茶绨界紒杈╁仱閸┾偓妞ゆ帊闄嶆禍婊勩亜閹扳晛鐒烘俊顖楀亾闂備浇顕栭崳顖滄崲濠靛鏄ラ柍褜鍓氶妵鍕箳閹存繍浠鹃梺鎶芥敱鐢繝寮诲☉姘勃闁硅鍔曢ˉ婵嬫⒑闁偛鑻崢鍝ョ磼椤旂晫鎳囬柕鍡曠閳诲酣骞囬鍓ф闂備礁鎲″ú锕傚礈閿曗偓宀e潡鎮㈤崗灏栨嫼闂佸憡鎸昏ぐ鍐╃濠靛洨绠鹃柛娆忣槺婢ц京绱掗鍨惞缂佽鲸甯掕灒闂傗偓閹邦喚娉块梻鍌欑濠€閬嶅磻閹剧繀缂氭繛鍡樻嫴婢跺⿴娼╅柤鍝ユ暩閸橀亶鏌f惔顖滅У闁稿鎳愭禍鍛婂鐎涙ḿ鍘甸悗鐟板婢ф宕甸崶鈹惧亾鐟欏嫭绀堥柛蹇旓耿閵嗕礁螣鐞涒剝鏁犻梺璇″瀻閸屾凹妫滄繝鐢靛Х閺佸憡鎱ㄩ弶鎳ㄦ椽鏁冮崒姘憋紮闂佸壊鐓堥崑鍡欑不妤e啯鐓欓悗娑欋缚缁犳﹢鏌$€n亜鏆熺紒杈ㄥ浮閸┾偓妞ゆ帒鍊甸崑鎾绘晲鎼粹剝鐏嶉梺缁樻尭閸熶即骞夌粙搴撳牚闁割偅绻勯ˇ褍鈹戦悙鏉戠仸婵ǜ鍔戦幆宀勫幢濡炴洖缍婇弫鎰板醇閻旂补鍋撻崘顔界厽闁圭儤鍩婇煬顒勬煛瀹€鈧崰搴ㄥ煝閹捐鍨傛い鏃傛櫕娴滄劙姊绘担鍛靛綊顢栭崱娑樼闁归棿绀侀悡鈥愁熆鐠哄搫顦柛瀣崌瀹曠兘顢橀悙鎰╁劜閵囧嫰鏁傞崹顔肩ギ濠殿喖锕ュ浠嬪蓟閸涘瓨鍊烽柤鑹版硾椤忣參姊洪崨濞掝亪骞夐敍鍕床婵炴垯鍨圭痪褔鏌熺€电ǹ浠滈柡瀣Т椤啴濡堕崘銊т痪闂佹寧娲忛崹褰掓偩閻戠瓔鏁冮柨鏇楀亾閸烆垶鎮峰⿰鍐伇缂侇噮鍘藉鍕箾閻愵剚鏉搁梺鍦劋婵炲﹤鐣烽幇鏉跨缂備焦锚閳ь剙娼¢弻銊╁籍閳ь剙鐣峰Ο缁樺弿闁惧浚鍋呴崣蹇斾繆椤栨氨浠㈤柣鎾村姍閺岋綁骞樺畷鍥╊啋闂佸搫鏈惄顖炲春閸曨垰绀冮柍鍝勫枤濡茶埖淇婇悙顏勨偓褏鎷嬮敐鍡曠箚闁搞儺鍓欓悞鍨亜閹哄棗浜惧┑鐘亾閺夊牄鍔庢禒姘繆閻愵亜鈧倝宕㈡總绋垮簥闁哄被鍎查崑鈺呮煟閹达絽袚闁哄懏鐓¢弻娑㈠Ψ椤栫偞顎嶉梺鍛婃礀閸熸潙顫忛搹鍦煓闁圭ǹ瀛╅幏鍗烆渻閵堝啫濡奸柟鍐茬箳缁顓兼径濠勭暰濡炪値鍏橀埀顒€纾粔娲煛娴g懓濮嶇€规洏鍔戦、娆撳礂閸忚偐鏆梻鍌氬€风粈渚€骞夐垾瓒佹椽鎮㈤搹閫涚瑝闂佸搫绋侀崢濂告嫅閻斿吋鐓ユ繝闈涙-濡插綊鏌涙繝鍕幋闁哄本绋戦埢搴ょ疀閿濆棌鏋旀繝纰樻閸嬪懘宕归崹顕呮綎婵炲樊浜濋悞濠氭煟閹邦垰钄奸悗姘嵆閺屾稑螣缂佹ê鈧劙鏌″畝瀣М妤犵偞甯¢幃娆撴偨閸偅顔撻梺璇插椤旀牠宕抽鈧畷婊堟偄妞嬪孩娈鹃梺鍦劋閸╁牆岣块埡鍛叆婵犻潧妫欓ˉ鐘绘煕濞嗗繐鏆炵紒缁樼箓閳绘捇宕归鐣屼壕闂備胶顢婂▍鏇㈠箰閸濄儱寮查梻浣虹帛鏋い鏇嗗懎顥氬┑鐘崇閻撴瑩鏌熼鍡楁噺閹插吋绻濆▓鍨仭闁瑰憡濞婂璇测槈濡攱顫嶅┑顔筋殔閻楀﹪寮ィ鍐┾拺闂傚牃鏅濈粙濠氭煙椤旂厧鈧灝顕f繝姘櫜闁糕剝锚閸斿懘姊洪棃娑氱濠殿喗鎸冲绋库枎閹惧鍘介梺缁樏崯鎸庢叏婢舵劖鐓曢柣妯虹-婢х數鈧娲樺浠嬪春閳ь剚銇勯幒宥夋濞存粍绮撻弻鐔衡偓鐢登规禒婊勩亜閺囩喓鐭嬮柕鍥у閺佸啴宕掗妶鍡╂缂傚倷娴囨ご鎼佸箰閹间緡鏁囧┑鍌溓瑰钘壝归敐鍤借绔熸惔銊︹拻濞达絼璀﹂弨鐗堢箾閸涱喗绀嬮柟顔ㄥ洦鍋愰悹鍥皺閻ゅ洭姊虹紒妯曟垵顪冮崸妤€鏋侀柛鈩冪⊕閻撴洟鏌熼柇锕€鏋涘ù婊堢畺閺岋箓骞嬪┑鎰ㄧ紓浣介哺閹瑰洤鐣烽幒鎴旀瀻闁瑰瓨绻傞‖澶愭⒒娴e憡鍟為柛鏃€娲熼垾锕傛倻閻e苯绁﹂棅顐㈡处缁嬫帡寮查幖浣圭叆闁绘洖鍊圭€氾拷28缂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣椤愪粙鏌ㄩ悢鍝勑㈢痪鎹愵嚙椤潡鎳滈棃娑樞曢梺杞扮椤戝洭骞夐幖浣哥睄闁割偅绋堥崑鎾存媴閼叉繃妫冨畷銊╊敊闂傚鐩庨梻鍌欑劍閸庡磭鎹㈤幇顒婅€块梺顒€绉甸崑鍌炴倵閿濆骸鏋熼柍閿嬪灴閹嘲鈻庤箛鎿冧痪闂佺ǹ瀛╅〃濠囧蓟濞戙垹惟闁靛/宥囩濠电姰鍨奸~澶娒洪悢鐓庢瀬闁瑰墽绮弲鎼佹煥閻曞倹瀚�
康波1,2, 夏梓峻2, 孟祥飞2 1. 天津大学智能与计算学部,天津 300350
2. 国家超级计算天津中心,天津 300457

Application-driven Big Data and Artificial Intelligence Integration Platform Construction

Kang Bo1,2, Xia Zijun2, Meng Xiangfei2 1. College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
2. National Supercomputer Center in Tianjin, Tianjin 300457, China

收稿日期:2019-08-25网络出版日期:2019-01-20
基金资助:国家重点研发计划.2016YFB0201500
天津市企业博士后创新项目择优资助计划资助项目.TJQYBSH2018002


Received:2019-08-25Online:2019-01-20
作者简介 About authors

康波,1986年生,博士,国家超级计算天津中心高级工程师,目前主要开展不同体系结构下大规模深度学习并行实现、人工智能可视化交互建模训练、典型场景算法开发与应用等研究。
本文中负责融合平台框架设计、应用分析。
Kang Bo, born in 1986, male, Ph.D., senior engineer of the National Supercomputing Tianjin Center, is currently conducting research on parallel implementation of large-scale deep learning under different architectures, interactive modeling training of artificial intelligence, and industrial-based AI development and application.
In this paper, he is responsible for the design and application analysis of the fusion platform.
E-mail: kangbo@nscc-tj.cn


夏梓峻,1986年生,硕士,国家超级计算天津中心应用研发部副部长,主要研究方向为高性能计算应用研发、大规模并行计算研发与优化、高性能应用软件研发、数据分析与处理、深度学习应用研发、企业智能应用场景解决方案。
本文中负责融合环境方法介绍和应用分析。
Xia Zijun, born in 1986, male, deputy director of Research & Application Department,National Supercomputer Center in Tianjin. His main research field contains HPC application R&D, massively parallel computing R&D, data Analysis, deep learning and industrial application solution.
In this paper, he is responsible for writing the introduction and application analysis of the integrated environmental approach.
E-mail: xiazj@nscc-tj.cn


孟祥飞,1979年生,理学博士,国家超级计算天津中心教授级高级工程师,主任助理,应用研发部部长,中华人民共和国国家发展和改革委员会“大数据处理技术与应用”国家地方联合实验室主任工程师;中国计算机学会高性能计算专家委员会常委,中国医促会医学数据与医学计量分会副主委,中国抗癌协会肿瘤人工智能委员会副主任委员。主要研究方向为大规模并行处理技术、大数据技术研发与应用等。
本文中完成了论文的国内外现状分析、方法原理和结论展望。
Meng Xiangfei, born in 1979, male, Ph.D., professor-level senior engineer, assistant director of the National Supercomputing Tianjin Center, lead of application research and development department, director of "Big Data Processing Technology and Application" National and Local Joint Laboratory, Member of the Standing Committee of the CCF High Performance Computing Expert Committee, Vice Chairman of the Medical Data and Medical Measurement Branch of the China Association for the Promotion of Medical Sciences, and Deputy Director of the Cancer Artificial Intelligence Committee of the China Anti-Cancer Association (CACA). His main research focuses on large-scale. parallel processing technology, big data technology R&D and application.
In this paper, he is responsible for completing the analysis of both domestic and foreign research review, method principle and conclusion.
E-mail: mengxf@nscc-tj.cn.



摘要
【目的】介绍了面向产业需求的大数据与人工智能融合平台建设思路,形成了推动传统产业智能化、智能科技产业化的发展实施方案,为计算创新驱动提供参考。【方法】基于面向行业应用场景的数据特征理解和融合平台需求分析,阐述了基于应用驱动的超级计算与大数据、云计算、人工智能、物联网融合的平台层次结构,在基础融合环境、数据整合框架、业务系统几个方面系统介绍了该融合平台的体系架构和实现。【结果】基于该平台,实现了在装备制造、网联汽车、医疗健康等领域的典型应用,具备较好的适用性。【局限】作为公共开源开放平台提供服务,机构公信力、数据安全性是其下一步需要解决的重要问题。【结论】应用驱动的大数据与人工智能融合平台可作为社会开发、政府可控的智能产业科学发展生态的重要组成部分,进一步解决我国智能产业领域创新能力和创新支撑平台不足的现实问题。
关键词: 超级计算;大数据;人工智能;融合平台

Abstract
[Objective]In order to provide references for computational innovations, an industrial needs driven integration platform for big data and artificial intelligence analysis and application is proposed to promote the traditional industry intelligence and intelligent technology industrialization. [Methods]Based on the integration of both data feature understanding and platform requirements in industry-oriented application scenarios, the application-driven platform hierarchy in supercomputer center is designed in a fused architecture consists of supercomputing, big data, cloud computing, artificial intelligence and internet of things, which contains implications on physical facilities, system software and management system. In the supercomputer center, it mainly integrates service-related hardware facilities for big data, super-computing and cloud computing to realize data sharing, high-performance processing, and data security control. By eliminating the difference between various data sources, the platform provides an unified standard data access interface for upper-layer applications, which promotes standardization of big data processing in related industries for resource and data sharing. As an important field of big data applications, the high-efficiency big data application platform for industrials combines with the industrial cloud platform to realize data collection, transmission, collaboration and application by integrating the physical device, virtual network and big data analysis methods. The characteristics of industrial-based big data and artificial intelligence require innovative applications that support the production tasks, such as design, production, sales, operation and maintenance. [Results]Based on the platform, it has achieved typical applications in industrial fields such as equipment manufacturing, networked vehicles, medical health, etc., showing good applicability. In manufacturing, the platform is a tool for product supplier quality management control, carrying out abnormal inspection and prediction of parts and components, and achieving management ability to control the entire product chain. In networked vehicle, by collecting vehicle driving data and using deep learning modeling, it is possible to analyze the safety of autonomous driving and driving behavior. In disease screening, big data and artificial intelligence analysis for radiological imaging, pathology images, and electronic medical records can help doctors complete analysis of repetitive tasks and complex tasks. [Limitations]As a public open platform to provide services, institutional credibility and data security are important issue to be solved in the next step. [Conclusions]Application-driven big data and artificial intelligence integration platform acts as an important part of social development and government-controllable intelligent industry science development ecology, which further solves the practical problems that insufficient innovation ability in China's intelligent industry.
Keywords:supercomputing;big data;artificial intelligence;fusion platform on big data and AI


PDF (12472KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
康波, 夏梓峻, 孟祥飞. 应用驱动的大数据与人工智能融合平台建设. 数据与计算发展前沿[J], 2019, 1(1): 35-45 doi:10.11871/jfdc.issn.2096.742X.2019.01.005
Kang Bo. Application-driven Big Data and Artificial Intelligence Integration Platform Construction. Frontiers of Data and Computing[J], 2019, 1(1): 35-45 doi:10.11871/jfdc.issn.2096.742X.2019.01.005


引言

近年来,随着新兴信息技术的产生和应用,大数据、人工智能融合应用服务时代开启,并成为全球创新发展的重大驱动,国家、企业及相关行业机构都在向大数据、人工智能看齐,抢占数据创新的先机,努力成为数据创新的最大获益者。在“十三五”期间,国家相继发布大数据[1]、人工智能国家战略[2],推动大数据、人工智能发展成为国家在新的社会、技术发展阶段创新发展的重要手段。

由于信息技术驱动,社会已进入计算范式与数据范式并存的高度信息化时代,大数据代表的信息化新阶段不断推动信息技术融合,物联网和互联网成为形成、产生海量数据的手段,云计算成为汇聚和处理海量数据的手段,新一代人工智能成为处理海量数据、实现数据价值再造的手段。因此,要推动两化深度融合,打造行业智能深度应用场景,需要一个系统性信息化手段,实现计算能力、数据能力与网络能力的融合,而超级计算可提供强大的计算能力与大规模数据存储能力,是实现这些信息技术融合的基础支撑,同时也是实现数据、计算、方法和应用场景融合的有效支撑平台[3,4,5]

医疗健康、油气能源、生物基因、智慧港口、建筑信息模型(Building Information Model,BIM)+地理信息系统(Geographic Information System)、智慧城市、电子政务等这些关系国计民生的重要应用领域的快速发展均依赖于计算支撑的数据分析技术与基础设施[6],需要以高端信息技术特别是大数据、人工智能等技术为支撑来实现跨越式发展,国家超级计算天津中心已经在这些产业领域开展诸多创新,并进入实质产业化阶段[7]。因此要紧紧抓住发展先机,加快大数据、人工智能关键共性技术突破和自主高性能软硬件融合一体化服务研发,推动基础设施环境建设,促进面向产业的应用场景打造,为培育和发展战略性新兴产业提供动力支撑。

1 面向行业的数据特征理解

当前,面向行业领域智能应用场景打造过程中,数据作为最重要的资产和新型的生产要素,亟待解决如下问题:

(1)数据采集。针对设备、系统和生产流程等生产业务不同对象的数字化实现,解决数据来源问题,同时为数据处理提供原料。

(2)数据融合。数字化之后,需要实现“从散到融”[7],通过网络实现数据的流动、交互、复用和共享,是促进业务能力从单项服务到整体覆盖的必经之路。

(3)数据价值挖掘。针对跨业务环节、复杂应用需求等背景,实现数据高价值信息提取,必须结合超级计算、大数据、人工智能、云计算等关键技术创新,实现基于应用需求的信息挖掘。

例如,工业大数据和传统互联网大数据在数据采集、数据传输、数据共享服用和数据价值提取等多个方面存在显著不同[8,9,10,11,12,13],如表1所示。

Table 1
表1
表1工业大数据和传统大数据区别
Table 1Differences between Big Data from Industry and Big Data from Internet
业务环节工业大数据传统大数据
采集必须通过传感器等实现生产环节、作业环节等数据采集,实时性要求高互联网产生的数据为主,包括文字、图片等关系型数据,事务性操作衍生数据比例大
处理包括格式转换、数据异常处理、质量控制等,真实性和可靠性、完整性要求高数据异常处理,包括去重、约简等
存储涵盖结构化和半结构化,非结构化数据也逐渐增多,数据关联性高针对非结构化数据,有不同的存储方案支撑
分析建模分析复杂,精度和可靠性要求非常高,实时性要求高数据相关性分析为主,精度和可靠性要求不高
共享逐渐从以往单个业务服务向业务整体覆盖过渡,数据共享要求高以单项业务服务为主,对其他环节数据需求较少
可视化实时性要求高,涉及工业流程,要求预警和趋势可视数据分析结果展示

新窗口打开|下载CSV

与此同时,大数据、人工智能已经成为新的社会、技术发展阶段推动国家创新发展的重要手段,促使行业应用不断泛化和扩展。因此,应用驱动数据价值再创造、数据标准体系建设和基础设施能力建设三个方面是组织好数据、利用好数据、表达好数据,并且针对行业深度智能应用场景打造的重点:

(1)应用驱动的数据价值再创造。由于信息化、数字化关键技术突破和行业应用需求不断提高,数据管理困难、数据传输与共享不畅、数据价值密度低等实际问题突出,以应用为导向,实现数据价值再创造是发展的根本目标。

(2)数据获取、标准体系构建与科学管理。数据源多样化,数据结构不同,包括数据库、文本、图片、视频、网页等各类结构化、非结构化及半结构化数据,为后续数据分析带来了巨大困难和挑战,针对数据源采集数据、预处理和集成、分布式高效存储,为后续环节提供统一、完整、可靠的高质量数据集是发展基础。

(3)网络设施能力、高端电子信息技术发展。社会高度信息化将产生海量多源异构数据和场景应用需求;网络化使得数据传输、访问、共享更加方便、快捷和高效;标准体系建设则确保数据的一致性、可靠性、完整性。三者的协同发展是大数据产业发展的保障。

2 大数据与人工智能融合平台

面向产业的超级计算应用和面向人工智能的超级计算应用成为超级计算的热点。今年召开的国际超级计算会议(ISC 2019)专门设立了产业日和机器学习日,凸显出国内外高性能计算机构对这两个领域的重视[14]。“计算+仿真”成为工业应用热点,“计算+深度学习框架”是人工智能应用的主流模式,“云计算+数据处理”是目前各大互联平台数据处理的通用模式[15,16,17,18,19]。通过多年的实践,国家超级计算天津中心从应用需求和信息化技术发展需求两个维度,实现了“超级计算与云计算、大数据、人工智能”环境深度融合,并将之应用到了实际产业应用中,是国内外超级计算服务产业应用的新探索。

2.1 超级计算与云计算、大数据、人工智能融合环境

大数据与人工智能融合平台首先是硬件设备的融合,在超算中心,主要是整合超级计算、云计算、大数据、人工智能等相关平台设施,实现不同平台数据共享、高效能处理和数据安全可控(图1)。同时,构建高效稳定的大数据存储环境,例如多层次式和动态可扩展的海量数据存储系统研究。另外,面向平台,形成分布式并行数据库、数据处理集成工具集等共性技术(图2)。

图1

新窗口打开|下载原图ZIP|生成PPT
图1超级计算与大数据、云计算融合设施框架

Fig. 1Fusion architecture on supercomputing, big data and cloud computing infrastructures



图2

新窗口打开|下载原图ZIP|生成PPT
图2超级计算与大数据、云计算、人工智能融合服务环境

Fig. 2Fusion environment on supercomputing, big data, cloud computing and artificial intelligence



稳定高效的网络设施是融合环境的基础支撑。通过高效网络,保证了不同载体间的数据交换。整个融合环境构建了内部网络和外部网络体系。内部网络体系包括通用网络设施和天河高速互联网络,前者通过交换机等实现了超级计算机、云计算服务器、存储服务器、可视化服务器等不同设施之间的物理互联,后者用于实现超级计算机内部计算节点与Lustre公共存储之间的高速通信和数据交换。外部网络通过配备高带宽公共互联网络和多网冗余,满足大数据用户和企业对数据传输速度和效率的要求。同时结合地区实际,开通了面向天津市区、空港经济区、中新生态城的专有网络,以满足对数据传输要求非常高的应用企业和用户需求;开通了教育专网,以满足高校在线实训、科学计算资源调研等需求。通过互联网、专网建设构建和完善了高效的服务网络体系,保障用户数据传输的高效和实时性。

融合计算设施是融合环境的基础保证。大数据和人工智能分析需要充足的算力作为支撑。面对不同的场景,其所需算力类型差异较大。针对科学数据分析计算,如基因数据分析、材料数据分析等,需要双精度(64位)的高性能计算能力;对于人工智能模型训练,则需要有单精度(32位)或半精度(16位)的高性能计算能力;对于数据采集、统计等事务性数据处理,则需要云计算的能力;对于大规模数据的高效展示,则需要可视化渲染计算能力。因此,融合平台需要具备超级计算与云计算融合的计算处理设施,来实现对事务并发、数据并发的高效处理。在底层形成具有分布式计算、异构高性能计算、内存计算、众核计算等多类型计算资源,利用多层级资源调度策略,形成支撑多样性计算的融合资源池。

大规模数据存储设施是融合环境的数据载体支撑。通过统筹云对象存储、数据库存储、高性能计算存储设施,形成大规模动态可扩展存储设施。针对数据采集、预处理、分析、建模、计算/训练、可视化、部署等不同应用环节和场景,构建了包含近线、在线、高速内存存储的海量层次式动态可扩展存储技术。针对结构化数据、非结构化数据和半结构化数据等不同来源和格式的数据对底层存储系统、时效性、应用处理的需求,平台解决了大数据分级存储构建、分级存储性能优化、数据共享、数据迁移和去重等关键问题,支撑了海量大数据的存储和处理。在容灾备份方面,平台采用符合信息系统灾难恢复规范的数据灾备管理技术,保障数据的安全。

2.2 多源异构数据整合框架

融合平台应充分屏蔽底层各类数据源之间的差异,为上层应用提供统一标准的数据访问接口。推动相关行业的大数据处理流程的标准化,实现资源共享、数据共享,其核心任务是将相互关联的分布式异构数据源集成到一起,让用户以透明的方式访问这些数据源,以便消除数据无法共享、业务流无法打通等信息孤岛现象。

数据整合流程中,结合高性能计算,通过并行模式抽取通用数据的属性和关键词、并行格式转换,实现并行数据建模和管理。机器学习作为数据整合的有效手段,用其训练出统一数据模型,通过语义分析,实现产业数据多样性的横向关联和纵向关联,保证数据的高效查询、检索关联和简单分析处理。最后,整合形成数据分析处理需要的标准化数据。通过建立从数据采集到数据存储的规范流程,形成统一标记识别码,使数据在整合、存储、处理等环节进行有效传输。在数据表示标准上,需要构建数据编码、元数据、非结构化数据、大数据集统一描述规范等来保证数据的有效检索与管理。在数据存储标准上,需要结合融合环境的存储设施,构建非关系型数据库、非结构数据存储系统相关规范,借助分布式文件系统、非关系型数据库等技术实现,解决数据一致性、数据放置、故障检测、可扩展性等问题。基于此,构建研究交互式异构数据分析框架,最终形成一套高效的大数据分析软件框架,服务实际生产环境下的数据处理。

同时,整合目前已有的大数据分析方法,利用现有的Spark、Hadoop等工具,构建通用处理工具集,提供简单、直观的用户接口,支持交互式全可视化拖拉操作。针对接入的开源开放数据源和产业数据源,支持主流关系型数据库如MySQL、Oracle、PostgreSQL和非关系型数据库如MongoDB、Redis,避免繁琐的算法参数、数据类型、数据类别等因素影响,降低数据处理使用门槛,为用户多样性的大数据异构数据分析提供支持。

2.3 服务生产的业务处理系统

融合平台以国家超级计算天津中心的“天河一号”超级计算机与“天河”百亿亿次超级计算机原型系统、天河工业云平台、天河政务云平台等软硬件资源为依托,以大数据和人工智能产业创新发展为牵引,支持基础设施统筹发展,打破数据资源壁垒,形成大数据应用创新系统支撑环境、工业大数据应用创新平台和公共数据共享开放平台。工业领域是大数据和人工智能应用的重要领域,融合平台通过与工业云平台结合,实现物理设备与虚拟网络融合的数据采集、传输、协同和应用集成,运用大数据分析方法,结合工业领域特点,开发支撑设计、生产、销售、运维等工业大数据领域的创新应用(图3)。

图3

新窗口打开|下载原图ZIP|生成PPT
图3服务生产的业务处理系统框架示意图

Fig.3Schematic diagram of processing system framework for service production



在设计领域,以数字化模型为载体,利用仿真研发设计等技术,实现粗放式设计模式向精准化、数字化设计模式转变;通过制定面向行业的典型工业大数据字典,实现产品各设计环节大数据的高度有序化展示,为设计提供知识参考,提高设计效率。在生产领域,利用物联网技术开展生产线的工业大数据采集,构建大数据处理模型,实现生产全流程的实时监控,并基于仿真结果优化生产流程;建立生产各要素的模型仓库,利用人工智能等手段构建基于训练模型的专家库,对生产质量进行控制与预测。在销售领域,依托工业云平台,开展企业内部的历史经营大数据、用户行为大数据以及第三方大数据的综合分析,通过深度数据挖掘,建立用户行为、产品特征以及外部影响与销售的耦合关系,提出更符合市场规律的营销策略与销售模式。在运维领域,根据不同行业运维特点,构建“大数据+云计算+HPC”的多平台融合体系,高效整合各工业运行环节大数据,实现对运行各环节的可视化监控,对运行维护中的重大潜在问题及时进行数据分析与仿真模拟,降低故障风险与运维成本。

应用平台按照工业大数据分析流程,按照多层次进行设计与建设。在数据采集与预处理方面,以生产经营业务、设备物联和外部数据为基础,汇总产品、物料、产线、工艺、质量、设计、客户、工业链、市场等多种类型工业数据。对多源异构数据进行规范化预处理,产生全链条可流动的整合数据。在数据建模与管理方面,结合工业云平台和大数据处理建模技术,开展用户、产品、流程、产线等的建模、处理与分析,实现各类工业场景数据结果的可视化,对数据质量、能力成熟度、数据共享性与安全策略进行管理。在工业化应用方面,基于建模数据和数据管理结果,开展虚拟仿真、协作设计、流程优化、远程维护、智能服务等不同工业场景应用[8,9]

3 基于融合平台的典型应用服务

应用驱动的融合平台,目标是最大化地满足大数据应用对信息技术平台的要求,现在这一平台方案已经在气候气象、装备制造、智能网联车、智慧港口、油气能源、BIM+GIS智慧城市、电子政务等产业大数据应用领域开展服务支撑和应用示范,其中有些领域目前利用了这一平台方案中的部分能力,而工业制造、智能网联车、医疗健康等已经逐步成为融合平台系统能力充分施展的典型代表。

3.1 基于大数据的生产供应链管理

生产供应链质量控制是制造业质量管理的重要方面,其直接决定了产品整体的质量水平。随着制造业发展,零部件的生产和采购越来约细化,一件产品可能需要多达上百家的供应链条来保证,传统的线下抽样检查已不能满足先进制造的需求。基于天河大数据与人工智能融合服务平台,接入到各产品零部件供应商的生产过程中,通过直接导入、线上录入或OCR智能录入等方式,将生产过程的过数据汇聚起来,形成面向供应链管理的数据资源池。针对生产能力水平较低(生产过程产品质量波动大、不稳定)的部件记录部件,通常有10多个特性,平台按照每天录入收集特性数据上百条,通过传统统计方法和业务分析,初步分析部件特性间的相关性,筛选构建形成部件特性的特征数据列,根据历史故障分析确定数据列的时间向量长度,以此采集整理形成训练数据集。利用平台集成工具集,开展数据特征工程和标准化处理。基于RNN的时序分析方法,利用平台训练系统和计算能力,开展模型训练和评估,实现其生产异常的监控和预测。基于结果,构建异常字典,形成可指导质量管理的智能专家库,为生产过程的质量智能监控提供帮助(图4)。

图4

新窗口打开|下载原图ZIP|生成PPT
图4基于大数据的生产供应链管理框架示意图

Fig.4Schematic diagram of production supply chain management framework based on big data



3.2 汽车智能辅助驾驶应用

目前,融合平台结合视频检测、语音检测等技术,通过深度学习大规模数据训练,为汽车制造商提供辅助驾驶研发支撑,实现数据采集、预处理、特征提取、数据分析、模型设计与训练、模型部署全环节贯通的大数据与人工智能研发服务平台(图5)。

图5

新窗口打开|下载原图ZIP|生成PPT
图5基于融合平台的智能驾驶辅助应用研发体系

Fig.5Intelligent driving assistance application development system based on fusion platform



基于天河大数据与人工智能融合服务平台的数据分析工具集和人工智能训练引擎,联合厂商共同设计实现路况识别、辅助标志识别、辅助驾驶、设备异常预测与预警等算法模型,并基于平台在算法、算力与应用场景的融合提供在线/离线相结合的应用部署服务。

例如,设备异常预测与预警方面,提供包括电子系统异常散点识别、电子系统异常关联识别、基于动力学的底盘异常分析、操作对异常的影响分析、环境对异常的影响分析等,实现数据解析、异常特征抓取、降低新车型召回风险,减少时间与人员成本,并系统化地积累经验,成为可重复执行的异常模型资产价值(图6)。

图6

新窗口打开|下载原图ZIP|生成PPT
图6车辆应用特征分析与可视化

Fig.6Vehicle application feature analysis and visualization



3.3 智能医学辅助诊断

面向医院的多模态分析,开展了面向放射医学影像、病理图像、电子病历的分析工作(图7)。医学智能分析需要解决大规模数据格式转换问题,比如单张的病理切片或单病例CT切片可达到2GB以上,导致用于训练分析的数据体量达到10TB的规模,通过格式转换、增广等处理后,构建的数据集会达到>100TB以上的数据规模,平台通过构建层次式动态可扩展存储和高性能计算的支撑系统来开展人工智能模型的训练。平台针对图像,集成了针对非结构化图像的存储格式、尺寸调整、对比度等处理算法。在放射医学影像方面,针对脑部出血点检测、肺结节识别,利用平台建模功能,分别形成了面向辅助医疗应用的医学影响检测系统。在病理图像方面,针对鼻咽癌、乳腺癌等癌变判别,达到了80%以上的敏感性和特异性,在推入实际应用后将有效降低患者额外仪器检验的成本,实现了对肿瘤辅助检测的支撑。在全院患者风险评估方面,通过对电子病理数据的特征提取,建立个人风险指标动态创建,实现对全院住院患者的动态监控,有望减少因漏诊或漏检引起的医疗事故,提高救治水平。

图7

新窗口打开|下载原图ZIP|生成PPT
图7智能医学辅助诊断系统

Fig.7Intelligent system for computer-aided diagnosis



3.4 基于专有网络的协同大数据应用

结合天津的产业应用实际情况,面对实时气象预报、基因检测等对数据传输要求较高的行业,融合平台通过专有光纤网络接入,提供高速网络以实现超级计算和海量数据处理能力的软硬件支撑服务(图3)。使用机构将这些能力接入自身行业应用平台中,实现基础平台与实际应用场景的协同。

在基因检测方面,由检测机构采集孕检相关数据,实时传送到超算中心基因数据处理应用平台,利用超级计算设施,进行数据的实时处理与分析,最后得出检测报告[7]。通过基于专网的融合平台接入,实现了数据处理和临床应用的无缝对接,更好地为用户提供健康服务。

在气象预测方面,通过专网接入,实现了实时气象基础观测数据和参数传入,并在融合平台设施上实现数据存储[7]。借助融合平台部署的不同模式的气象预报系统开展实时气象预报,基于深度学习框架具备了开展高维参数的7天内气象预测与参数优化等工作的能力。计算结果数据进行整合和部分可视化计算后,返回至气象局的气象预报系统,为气象预报提供决策参考。

4 结论与展望

应用驱动的大数据与人工智能融合平台可进一步解决我国智能产业领域创新能力和创新支撑平台不足的现实问题。产业领域智能研究、应用转化是一个跨界融合的系统工程,需要信息技术领域和产业行业领域深入合作,建立联合实验室、协同创新中心,实现强强联合、相互推动和支撑,这是非常有效的协同发展方式。

大数据、人工智能促进了政府治理模式、产业生产方式、公共服务形式的变革,其同高性能计算、云计算、物联网等技术融合,支撑信息技术新时代的到来。在大数据、人工智能发展方面,不仅要促进芯片、通信、系统软件等电子信息基础产业的发展,同时在经济、社会发展的过程中,应注重标准化和信息化体系建设,加大网络基础设施建设,提升数据流通效率,降低流通成本。以计算创新驱动为切入点,加快推进“超级计算与云计算、大数据、人工智能、物联网”融合模式在工业制造、医疗健康、公共服务等领域的应用水平,形成自主可控、社会开放、公信力强的智能产业科学发展生态。

利益冲突声明

所有作者声明不存在利益冲突关系。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

工业与信息化部. 大数据产业发展规划(2016–2020年).
2019-08-23]. http://www.ndrc.gov.cn/fzgggz/fzgh/ghwb/gjjgh/201706/t20170622_852127.html.

URL [本文引用: 1]

国务院 . 新一代人工智能发展规划.
2019-08-23]. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm.

URL [本文引用: 1]

廖湘科, 谭郁松, 卢宇彤 , . 面向大数据应用挑战的超级计算机设计
[J]. 上海大学学报:自然科学版, 2016,22(1):3-16.

[本文引用: 1]

张云泉 . 2018年中国高性能计算机发展现状分析与展望
[J]. 计算机科学, 2019,46(1):1-5.

[本文引用: 1]

潘云鹤 . “迎接人工智能2.0时代”
[J]. 上海信息化, 2018(10):22-23.

[本文引用: 1]

聂含伊, 杨希, 张文喆 . 面向多领域的高性能计算机应用综述
[J]. 计算机工程与科学, 2018,40(z1):145-153.

[本文引用: 1]

孟祥飞, 冯景华, 赵洋 , . 应用驱动的大数据融合平台建设
[J]. 大数据, 2017,3(2):67-77.

[本文引用: 4]

黄明峰 . 工业大数据发展态势与典型应用
[J]. 电信科学, 2016,2(7):175-178.

[本文引用: 2]

李杰 . 工业大数据—工业4.0时代的工业转型与价值创造[M]. 邱伯华,译.北京: 机械工业出版社, 2015.
[本文引用: 2]

孔宪光, 章雄, 马洪波 , et al. 面向复杂工业大数据的实时特征提取方法
[J]. 西安电子科技大学学报, 2016,43(5):70-74.

[本文引用: 1]

王建民 . 工业大数据技术综述
[J]. 大数据, 2017(6):3-14.

[本文引用: 1]

刘强, 秦泗钊 . 过程工业大数据建模研究展望
[J]. 自动化学报, 2016,2:161-171.

[本文引用: 1]

赵邦六 . 油气工业地震勘探大数据面临的挑战及对策
[J]. 中国石油勘探, 2014,19(4):43-47.

[本文引用: 1]

ISC High Performance 2019
https://2019.isc-program.com/. [2019-09-08].

URL [本文引用: 1]

ORNL. Summit Introduction. https://www.olcf.ornl.gov/summit/. [2019-08-24].
URL [本文引用: 1]

TOP500 list. https://www.top500.org/ [2019-08-24].
URL [本文引用: 1]

Reed D .A., Dongarra J . Exascale Computing and Big Data
Communications of the ACM, 2015,58(7):56-68.

[本文引用: 1]

Onishi R, Sugiyama D, Matsuda K . Super-Resolution Simulation for Real-Time Prediction of Urban Micrometeorology
[J]. 2019.

[本文引用: 1]

Sandholm T . Solving imperfect-information games
[J]. Science, 2018,347(6218):122-3.

[本文引用: 1]

闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗ù锝堟缁€濠傗攽閻樻彃鈧绱撳杈ㄥ枑闁哄啫鐗勯埀顑跨窔瀵粙顢橀悙鑼垛偓鍨攽閿涘嫬浠х紒顕呭灦瀵偊鎮╃紒妯锋嫼闂備緡鍋嗛崑娑㈡嚐椤栨稒娅犻柟缁㈠枟閻撶喖鏌熼崹顔兼殭濞存粍澹嗛埀顒冾潐濞叉牗鏅舵惔銊ョ闁告洦鍓氭慨婊堟煛婢跺顕滈柣搴㈠▕濮婂宕掑▎鎴犵崲闂侀€炲苯澧伴柛瀣洴閹崇喖顢涘☉娆愮彿婵炲鍘ч悺銊╂偂閺囥垺鐓熸俊顖濆吹閸欌偓闂佸憡鐟ョ€氼噣鍩€椤掑喚娼愭繛鎻掔箻瀹曞綊鎳為妷銈囩畾闂佸壊鍋呭ú鏍倷婵犲洦鐓忓┑鐐茬仢閸旀潙霉閸忓吋绀嬫慨濠冩そ閹筹繝濡堕崨顔锯偓楣冩⒑閼姐倕鏋傞柛搴㈠▕閸┾偓妞ゆ帊绀侀崵顒勬煕濞嗗繐鏆欐い鏇秮楠炲酣鎸婃径鎰暪闂備線娼ч¨鈧┑鈥虫喘瀹曘垽鏌嗗鍡忔嫼閻熸粎澧楃敮鎺撶娴煎瓨鐓曢柟鎯ь嚟閹冲洭鏌曢崱妤€鏆欓柍璇查叄楠炲鎮╃喊澶屽簥闂傚倷绀侀幉锟犳偡閿曞倹鏅柣搴ゎ潐閹哥ǹ螞濞戙垹鐒垫い鎺戝枤濞兼劖绻涢幓鎺旂鐎规洘绻堥獮瀣晝閳ь剟寮告笟鈧弻鐔煎礈瑜忕敮娑㈡煛閸涱喗鍊愰柡灞诲姂閹倝宕掑☉姗嗕紦闂傚倸鍊搁崐鎼佸磹閻戣姤鍊块柨鏃堟暜閸嬫挾绮☉妯诲櫧闁活厽鐟╅弻鐔告綇妤e啯顎嶉梺绋垮閺屻劑鍩為幋锕€纾兼慨姗嗗幖閺嗗牓姊虹粙娆惧剳闁哥姵鍔楅幑銏犫槈閵忕姷顓哄┑鐐叉缁绘帗绂掗懖鈺冪<缂備降鍨归獮鎰版煕鐎n偅宕屾慨濠呮閹风娀寮婚妷顔瑰亾濡や胶绡€闁逞屽墯濞煎繘濡搁敃鈧鍧楁煟鎼淬劍娑ч柟鑺ョ矋缁嬪顓奸崱鎰盎闂佸搫绋侀崑鍕閿曞倹鐓熼柟鎯х摠缁€鍐磼缂佹ḿ娲寸€规洖宕灒闁告繂瀚峰ḿ鏇炩攽閻橆偅濯伴悘鐐舵椤亞绱撴担铏瑰笡缂佽鐗撳畷娲焵椤掍降浜滈柟鐑樺灥椤忊晝绱掗悩顔煎姕闁靛洤瀚板顕€鍩€椤掑嫬纾块柛鎰皺閺嗭箓鏌曟径鍫濆姉闁衡偓娴犲鐓熼柟閭﹀墮缁狙勩亜閵壯冧槐闁诡喕绮欓、娑樷堪閸愌勵潟濠电姷顣介埀顒€纾崺锝嗐亜閵忊剝绀嬮柡浣稿€块幃鍓т沪閽樺顔囬梻鍌氬€烽懗鑸电仚闂佸搫鐗滈崜娑氬垝濞嗘挸绠婚悹鍥皺閻ゅ洭姊虹化鏇炲⒉闁荤噦绠撳畷鎴﹀冀閵娧咁啎闂佺硶鍓濊摫閻忓繋鍗抽弻锝夊箻鐎涙ḿ顦ㄦ繛锝呮搐閿曨亪銆佸☉妯锋瀻闁圭儤绻傛俊鎶芥⒒娴e懙鍦偓娑掓櫊瀹曞綊宕烽鐕佹綗闂佽宕橀褏澹曢崗鍏煎弿婵☆垰鎼幃鎴澪旈弮鍫熲拻濞撴埃鍋撻柍褜鍓涢崑娑㈡嚐椤栨稒娅犻悗娑欋缚缁犳儳霉閿濆懎鏆遍柛姘埥澶娢熼柨瀣垫綌闂備線娼х换鍡涘焵椤掆偓閸樻牠宕欓懞銉х瘈闁汇垽娼у瓭闂佹寧娲忛崐婵嬪箖瑜庣换婵嬪炊瑜忛弻褍顪冮妶鍡楃瑨閻庢凹鍙冮幃锟犲Ψ閳哄倻鍘介梺鍝勬川閸嬫盯鍩€椤掆偓濠€閬嶅焵椤掍胶鍟查柟鍑ゆ嫹
相关话题/数据 计算 工业 智能 创新

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 面向大规模数据的科学可视化系统GPVis
    单桂华,1,*,刘俊1,2,李观1,2,高阳1,徐涛1,田东1,21.中国科学院计算机网络信息中心,北京1001902.中国科学院大学,北京100049GPVis:AScientificVisualizationSystemforLargeScaleDataShanGuihua,1,*,LiuJun ...
    本站小编 Free考研考试 2022-01-02
  • 联邦型RDF数据管理系统综述
    彭鹏1,邹磊21.湖南大学,信息科学与工程学院,湖南长沙4100822.北京大学,王选计算机研究所,北京100080SurveyonFederatedRDFSystemsPengPeng1,ZouLei21.CollegeofComputerScienceandElectronicEngineeri ...
    本站小编 Free考研考试 2022-01-02
  • 大数据3.0—— 后Hadoop时代大数据的核心技术
    刘汪根,孙元浩星环信息科技(上海)有限公司,上海200233BigData3.0—TheKeyTechnologiesofBigDatainPost-HadoopEraLiuWanggen,SunYuanhaoTranswarpTechnology(Shanghai)co,Ltd,Shanghai2 ...
    本站小编 Free考研考试 2022-01-02
  • SKS:一种科技领域大数据知识图谱平台 *
    周园春1,2,常青玲1,杜一11.中国科学院计算机网络信息中心,大数据技术与应用发展部,北京1001902.中国科学院大学,北京100049SKS:APlatformforBigDataBasedScientificKnowledgeGraphZhouYuanchun1,2,ChangQinglin ...
    本站小编 Free考研考试 2022-01-02
  • 数据中台技术相关进展及发展趋势
    苏萌,贾喜顺,杜晓梦,高体伟北京百分点信息科技有限公司,北京100089ResearchontheRecentDevelopmentandFutureTrendofDataMid-EndTechnologySuMeng,JiaXishun,DuXiaomeng,GaoTiweiBeijingPERC ...
    本站小编 Free考研考试 2022-01-02
  • 基于AUKF的分布式电源系统虚假数据攻击检测方法
    摘要虚假数据注入攻击(FDIA)是一种典型的网络攻击方式,其通过破坏数据完整性进而误导电力系统状态估计结果,严重危害电网运行安全。随着国家大力发展新能源产业,越来越多的分布式电源注入电力系统,使得电网中大量测量数据具有随机、多变的特性,分布式电源系统中的虚假数据检测难度大大增加。针对这一问题,本文构 ...
    本站小编 Free考研考试 2022-01-02
  • 基于数据驱动的配电网停电预测模型
    摘要停电事故作为影响配电网供电可靠性重要的因素之一,其预测的准确性将给整个电力系统的可靠性带来积极影响。本文提出了一种基于数据驱动的配电网停电预测模型,能够有效地预测停电事故的发生。该模型首先采用一种基于K-means聚类的停电数据集欠采样方法降低原始数据集的不平衡比;然后在此基础上,提出了一种改进 ...
    本站小编 Free考研考试 2022-01-02
  • 智能软开关选址定容模型及其求解算法
    摘要基于现代电力电子技术的智能软开关能够实现同区甚至异区馈线互联,进而通过闭环运行提高供电可靠性及分布式电源接纳能力。智能软开关选址与定容策略是决定其潮流调节能力及应用经济性的关键因素。文中提出了一种基于有功潮流灵敏度的智能软开关选址策略;在此基础上,考虑投资和运行成本,建立了确定智能软开关容量的双 ...
    本站小编 Free考研考试 2022-01-02
  • 基于随机响应面的电-气互联系统概率最优能流计算方法
    摘要电-气互联系统(IEGS)作为一种新型能源供给模式,极具发展潜力。本文提出了一种基于随机响应面的电-气互联系统概率最优能流计算方法。首先,以IEGS总运行成本为目标,考虑电力系统、天然气系统的运行约束,并将电转气细分为电转氢气与电转天然气两种电-气耦合模式,建立了最优能流模型;然后,结合IEGS ...
    本站小编 Free考研考试 2022-01-02
  • 基于多智能体强化学习的多园区综合能源系统协同优化运行研究
    摘要多园区综合能源系统协同优化运行能充分发挥多能耦合的灵活性,降低系统运行成本,但多主体利益分配问题、隐私保护需求及多重不确定量的存在给多园区协同优化运行带来了巨大挑战。为此,本文建立了一个多园区协同优化运行架构,并采用多智能体深度确定性策略梯度算法进行求解。仿真结果表明,无论是面对确定性场景还是不 ...
    本站小编 Free考研考试 2022-01-02