删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

N1-soliton solution for Schr【-逻*辑*与-】ouml;dinger equation with competing weakly nonlocal and parabol

本站小编 Free考研考试/2022-01-02

Mohammed O Al-Amr,1, Hadi Rezazadeh,2, Khalid K Ali,3, Alper Korkmazki,41Department of Mathematics, College of Computer Sciences and Mathematics, University of Mosul, Mosul 41002, Iraq
2Faculty of Engineering Technology, Amol University of Special Modern Technologies, Amol, Iran
3Mathematics Department, Faculty of Science, Al-Azhar University, Nasr-City, Cairo, Egypt
4Nord Staße 9, Weimar, Germany

Received:2020-01-25Revised:2020-03-13Accepted:2020-04-9Online:2020-05-22


Abstract
The nonlocal nonlinear Schrödinger equation (NNLSE) with competing weakly nonlocal nonlinearity and parabolic law nonlinearity is explored in the current work. A powerful integration tool, which is a modified form of the simple equation method, is used to construct the dark and singular 1-soliton solutions. It is shown that the modified simple equation method provides an effective and powerful mathematical gadget for solving various types of NNLSEs.
Keywords: Schrödinger equation;soliton;integrability;modified simple equation method


PDF (700KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Mohammed O Al-Amr, Hadi Rezazadeh, Khalid K Ali, Alper Korkmazki. N1-soliton solution for Schrödinger equation with competing weakly nonlocal and parabolic law nonlinearities. Communications in Theoretical Physics, 2020, 72(6): 065503- doi:10.1088/1572-9494/ab8a12

1. Introduction

The dimensionless form of the Schrödinger equation with nonlocal and cubic–quintic nonlinearities with spatio-temporal dispersion is given by$\begin{eqnarray}\begin{array}{l}{{\rm{i}}{q}}_{t}+{\rho }_{1}{q}_{{xx}}+{\rho }_{2}{q}_{{xt}}\\ \,+\left({b}_{1}{\left|q\right|}^{2}+{b}_{2}\,{\left|q\right|}^{4}\right)q\\ \,+{b}_{3}{\left({\left|q\right|}^{2}\right)}_{{xx}}q=0,\end{array}\end{eqnarray}$where q=q(x, t) is a complex-valued unknown function with slowly changing amplitude, ρi (i=1, 2) are the parameters with ρ1 being a diffraction coefficient, bj (j=1, 2, 3) are constant coefficients, and subscripts denote partial derivatives [1, 2]. The coefficient b3 denotes nonlocal weak nonlinearity as b1 and b2 are cubic and quintic nonlinear term coefficients, respectively [3]. ρ2 represents the coefficient of spatio-temporal dispersion [2]. This term is added to the model in order to satisfy the well-posedness against standard group-velocity dispersion [2].

So far various techniques have been proposed to set solutions in different function forms covering exponential, rational, hyperbolic functions and periodic and soliton solutions [432]. Many of these solutions are, in fact, based on predicting a solution with some unknown parameters and determining them by substitution into the governing model. Without any doubt, the $\tanh (.)$ method [33] is one of ancestors of all of those predicted solution approaches. Extended or generalized forms of this method were also used to solve many problems arising in various fields in engineering or in natural sciences [34, 35]. In the subsequent years, lots of smart methods have been derived. Most of them are based on some simple ordinary differential equations (ODEs), their structures and solutions. Various forms of Kudryashov’s approach have been used to solve many model equations [3638]. Some methods are based on Riccati equations [39, 40]. The (G′/G)-expansion approach is also constructed on some ODE of second order [4143]. Simple equation methods are also derived for some simple ODEs and the relations among derivative terms, dependent variables and their solutions [44, 45, 46, 47].

In the present paper, we derive a modified form of the simple equation approach that has many solutions in different forms. In the first stage, a compatible wave transform is implemented to reduce the governing equation to some ODE. Since the governing equation is in complex form, the resulting ODE is also derived in complex form. The constraints among the coefficients reduce the resulting system derived from imaginary and real parts of the equation to a unique ODE. In the final stage, the predicted solution is substituted into the resulting ODE after determination of its degree by the homogeneous balance routine. Many kinds of solutions are constructed in various forms covering hyperbolic and exponential function forms.

2. Mathematical Analysis

In order to solve the model, the following hypothesis is selected:$\begin{eqnarray}q(x,t)=P(\eta ){{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}\left(x,t\right)},\end{eqnarray}$where P(η) represents the shape of the pulse and$\begin{eqnarray}\eta =x-{vt},\end{eqnarray}$and the phase component is defined as$\begin{eqnarray}{\rm{\Phi }}\left(x,t\right)=-\kappa x+\omega t+{\theta }_{0},\end{eqnarray}$where κ, ω and θ0 represent the frequency, the wavenumber and the phase constant respectively.

Substituting (2) into equation (1) and decomposing into real and imaginary parts gives$\begin{eqnarray}\begin{array}{l}\left({\rho }_{1}-v{\rho }_{2}\right)P^{\prime\prime} -(\omega +{\rho }_{1}{\kappa }^{2}-\kappa \omega {\rho }_{2})P+{b}_{1}{P}^{3}\\ \,+\,{b}_{2}{P}^{5}+2{b}_{3}\left\{P{\left(P^{\prime} \right)}^{2}+{P}^{2}P^{\prime\prime} \right\}=0,\end{array}\end{eqnarray}$and$\begin{eqnarray}v-{\rho }_{2}\left(\kappa v+\omega \right)+2{\rho }_{1}\kappa =0.\end{eqnarray}$From (6), setting the coefficients of the linearly independent functions to zero gives the speed of the soliton as$\begin{eqnarray}v=\displaystyle \frac{{\rho }_{2}\omega -2{\rho }_{1}\kappa }{1-{\rho }_{2}\kappa }.\end{eqnarray}$There is a constraint$\begin{eqnarray}{\rho }_{2}\kappa \ne 1.\end{eqnarray}$By applying equation (7) in equation (5), we get$\begin{eqnarray}\begin{array}{l}\left({\rho }_{1}\,M-\left({\rho }_{2}\omega -2{\rho }_{1}\kappa \right){\rho }_{2}\right)P^{\prime\prime} \\ \,-\,M(\omega +{\rho }_{1}{\kappa }^{2}-\kappa \omega {\rho }_{2})P+{b}_{1}\,M\,{P}^{3}\\ \,+\,{b}_{2}\,M\,{P}^{5}+2{b}_{3}\,M\left\{P{\left(P^{\prime} \right)}^{2}+{P}^{2}P^{\prime\prime} \right\}=0,\end{array}\end{eqnarray}$where$\begin{eqnarray*}M=1-{\rho }_{2}\kappa .\end{eqnarray*}$Balancing P5 with P2P″ in equation (9), then we get N = 1.

2.1. Application of modified simple equation method

In order to handle equation (9) by means of the modified simple equation method, we assume that equation (9) possesses the following formal solution:$\begin{eqnarray}P(\eta )={A}_{0}+{A}_{1}\left(\displaystyle \frac{\psi ^{\prime} }{\psi }\right),\end{eqnarray}$where A0 and A1 are constants such that ${A}_{1}\ne 0$ , and P(η) is an unknown function to be identified. One can easily obtain$\begin{eqnarray}P^{\prime} ={A}_{1}\left[\displaystyle \frac{\psi ^{\prime\prime} }{\psi }-{\left(\displaystyle \frac{\psi ^{\prime} }{\psi }\right)}^{2}\right],\end{eqnarray}$$\begin{eqnarray}P^{\prime\prime} ={A}_{1}\left[\displaystyle \frac{\psi \prime\prime\prime }{\psi }-3\displaystyle \frac{\psi ^{\prime} \psi ^{\prime\prime} }{{\psi }^{2}}+2{\left(\displaystyle \frac{\psi ^{\prime} }{\psi }\right)}^{3}\right].\end{eqnarray}$By substituting equations (10)–(12) into equation (9) and equating the coefficients of ${\psi }^{0},{\psi }^{-1},{\psi }^{-2},{\psi }^{-3},{\psi }^{-4}$ and ψ−5 to zero, we get$\begin{eqnarray}-M\left({k}^{2}{\rho }_{1}-k\omega {\rho }_{2}+\omega \right){A}_{0}+{b}_{1}{{MA}}_{0}^{3}+{b}_{2}{{MA}}_{0}^{5}=0,\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}-\left(\left(\left(-2{A}_{0}^{2}{b}_{3}-{\rho }_{1}\right)M-2k{\rho }_{1}{\rho }_{2}+\omega {\rho }_{2}^{2}\right)\psi \prime\prime\prime \right.\\ \left.+\,M\psi ^{\prime} \left(-5{A}_{0}^{4}{b}_{2}+{k}^{2}{\rho }_{1}-k\omega {\rho }_{2}-3{A}_{0}^{2}{b}_{1}+\omega \right)\right){A}_{1}=0,\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}-3{A}_{1}\left(\displaystyle \frac{-4}{3}M\psi \prime\prime\prime \psi ^{\prime} {A}_{0}{A}_{1}{b}_{3}-\displaystyle \frac{2}{3}M{\left(\psi ^{\prime\prime} \right)}^{2}{A}_{0}{A}_{1}{b}_{3}\right.\\ \,+\,\left(\left(2{A}_{0}^{2}{b}_{3}+{\rho }_{1}\right)M+2k{\rho }_{1}{\rho }_{2}-\omega {\rho }_{2}^{2}\right)\psi ^{\prime} \psi ^{\prime\prime} \\ \left.\,-\,\displaystyle \frac{10}{3}{A}_{0}{A}_{1}{\left(\psi ^{\prime} \right)}^{2}M\left({A}_{0}^{2}{b}_{2}+\displaystyle \frac{3}{10}{b}_{1}\right)\right)=0,\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}2\left(M\psi \prime\prime\prime \psi ^{\prime} {A}_{1}^{2}{b}_{3}+M{\left(\psi ^{\prime\prime} \right)}^{2}{A}_{1}^{2}{b}_{3}-8M\psi ^{\prime} \psi ^{\prime\prime} {A}_{0}{A}_{1}{b}_{3}\right.\\ \,+\,\left(\left(\left(5{A}_{0}^{2}{b}_{2}+\displaystyle \frac{1}{2}{b}_{1}\right){A}_{1}^{2}+2{A}_{0}^{2}{b}_{3}+{\rho }_{1}\right)M\right.\\ \,+\,\left.\left.2k{\rho }_{1}{\rho }_{2}-\omega {\rho }_{2}^{2}\right){\left(\psi ^{\prime} \right)}^{2}\Space{0ex}{3.4ex}{0ex}\right){A}_{1}\psi ^{\prime} =0,\end{array}\end{eqnarray}$$\begin{eqnarray}5{A}_{1}^{2}M{\left(\psi ^{\prime} \right)}^{3}\left(-2\psi ^{\prime\prime} {A}_{1}{b}_{3}+{A}_{0}\psi ^{\prime} \left({A}_{1}^{2}{b}_{2}+2{b}_{3}\right)\right)=0,\end{eqnarray}$$\begin{eqnarray}M{\left(\psi ^{\prime} \right)}^{5}{A}_{1}^{3}\left({A}_{1}^{2}{b}_{2}+6{b}_{3}\right)=0.\end{eqnarray}$From equations (13) and (18) we obtain$\begin{eqnarray}\begin{array}{rcl}{A}_{0} & = & 0,\mp \displaystyle \frac{\sqrt{-{b}_{1}+\sqrt{\left(4{k}^{2}{\rho }_{1}-4k\omega {\rho }_{2}+4\omega \right){b}_{2}+{b}_{1}^{2}}}}{\sqrt{2{b}_{2}}},\\ & & \mp \displaystyle \frac{\sqrt{-{b}_{1}-\sqrt{\left(4{k}^{2}{\rho }_{1}-4k\omega {\rho }_{2}+4\omega \right){b}_{2}+{b}_{1}^{2}}}}{\sqrt{2{b}_{2}}},\end{array}\end{eqnarray}$and$\begin{eqnarray}{A}_{1}=\mp \displaystyle \frac{\sqrt{-6{b}_{3}}}{\sqrt{{b}_{2}}}\end{eqnarray}$provided that ${b}_{2}\ne 0$.

From equations (14) and (17) we get$\begin{eqnarray}\begin{array}{rcl}\psi ^{\prime} & = & \displaystyle \frac{2{A}_{1}{b}_{3}}{{A}_{0}\left({A}_{1}^{2}{b}_{2}+2{b}_{3}\right)}\\ \psi ^{\prime\prime} & = & \displaystyle \frac{2{{MA}}_{0}^{2}{b}_{3}+2k{\rho }_{1}{\rho }_{2}-\omega {\rho }_{2}^{2}+M{\rho }_{1}}{M\left(-5{A}_{0}^{4}{b}_{2}+{\rho }_{1}{k}^{2}-k\omega {\rho }_{2}-3{A}_{0}^{2}{b}_{1}+\omega \right)}\psi \prime\prime\prime ,\end{array}\end{eqnarray}$so that$\begin{eqnarray}\displaystyle \frac{\psi \prime\prime\prime }{\psi ^{\prime\prime} }=\displaystyle \frac{2M\left(-5{A}_{0}^{4}{b}_{2}+{\rho }_{1}{k}^{2}-k\omega {\rho }_{2}-3{A}_{0}^{2}{b}_{1}+\omega \right){A}_{1}{b}_{3}}{\left(2{{MA}}_{0}^{2}{b}_{3}+2k{\rho }_{1}{\rho }_{2}-\omega {\rho }_{2}^{2}+M{\rho }_{1}\right){A}_{0}\left({A}_{1}^{2}{b}_{2}+2{b}_{3}\right)}.\end{eqnarray}$Integrating equation (22) with respect to η gives$\begin{eqnarray}\begin{array}{l}\psi ^{\prime\prime} (\eta )={c}_{1}\\ \times \exp \left(\displaystyle \frac{2M\left(-5{A}_{0}^{4}{b}_{2}+{\rho }_{1}{k}^{2}-k\omega {\rho }_{2}-3{A}_{0}^{2}{b}_{1}+\omega \right){A}_{1}{b}_{3}}{\left(2{{MA}}_{0}^{2}{b}_{3}+2k{\rho }_{1}{\rho }_{2}-\omega {\rho }_{2}^{2}+M{\rho }_{1}\right){A}_{0}\left({A}_{1}^{2}{b}_{2}+2{b}_{3}\right)}\right).\end{array}\end{eqnarray}$By using equation (21), we obtain$\begin{eqnarray}\begin{array}{l}\psi ^{\prime} (\eta )=\displaystyle \frac{2{A}_{1}{b}_{3}}{{A}_{0}\left({A}_{1}^{2}{b}_{2}+2{b}_{3}\right)}\times {c}_{1}\\ \times \exp \left(\displaystyle \frac{2M\left(-5{A}_{0}^{4}{b}_{2}+{\rho }_{1}{k}^{2}-k\omega {\rho }_{2}-3{A}_{0}^{2}{b}_{1}+\omega \right){A}_{1}{b}_{3}}{\left(2{{MA}}_{0}^{2}{b}_{3}+2k{\rho }_{1}{\rho }_{2}-\omega {\rho }_{2}^{2}+M{\rho }_{1}\right){A}_{0}\left({A}_{1}^{2}{b}_{2}+2{b}_{3}\right)}\right).\end{array}\end{eqnarray}$Integrating equation (24) gives$\begin{eqnarray}\begin{array}{l}\psi (\eta )={c}_{2}+\displaystyle \frac{2{{MA}}_{0}^{2}{b}_{3}+\left(2k{\rho }_{2}+M\right){\rho }_{1}-\omega {\rho }_{2}^{2}}{M\left(-5{A}_{0}^{4}{b}_{2}+{\rho }_{1}{k}^{2}-k\omega {\rho }_{2}-3{A}_{0}^{2}{b}_{1}+\omega \right)}\\ \times {c}_{1}\exp \left(\displaystyle \frac{2M\left(-5{A}_{0}^{4}{b}_{2}+{\rho }_{1}{k}^{2}-k\omega {\rho }_{2}-3{A}_{0}^{2}{b}_{1}+\omega \right){A}_{1}{b}_{3}}{\left(2{{MA}}_{0}^{2}{b}_{3}+2k{\rho }_{1}{\rho }_{2}-\omega {\rho }_{2}^{2}+M{\rho }_{1}\right){A}_{0}\left({A}_{1}^{2}{b}_{2}+2{b}_{3}\right)}\right).\end{array}\,\end{eqnarray}$

Accordingly, we have the following cases:

Case 1. If A0=0 and ${A}_{1}=\mp \tfrac{\sqrt{-6{b}_{3}}}{\sqrt{{b}_{2}}}$. We obtain a trivial solution. Hence, this case is refused.

Case 2. If ${A}_{0}=\mp \tfrac{\sqrt{-{b}_{1}+\sqrt{\left(4{k}^{2}{\rho }_{1}-4k\omega {\rho }_{2}+4\omega \right){b}_{2}+{b}_{1}^{2}}}}{\sqrt{2{b}_{2}}}$ and ${A}_{1}=\mp \tfrac{\sqrt{-6{b}_{3}}}{\sqrt{{b}_{2}}}$. Substituting the values of ${A}_{0},{A}_{1},\psi (\eta )$ and $\psi ^{\prime} (\eta )$ into equation (10), the exact solution of equation (9) is as follows:

$\begin{eqnarray}\begin{array}{rcl}P(\eta ) & = & \mp \displaystyle \frac{\sqrt{-{b}_{1}+\delta }}{\sqrt{2{b}_{2}}}\pm \displaystyle \frac{3\sqrt{2}{b}_{3}{c}_{1}}{\sqrt{{b}_{2}(-{b}_{1}+\delta )}}\\ & & \times \exp \left(\pm \displaystyle \frac{\delta \,\sqrt{-3\,{b}_{3}\left(-{b}_{1}+\delta \right)}M\eta }{M\left(-{b}_{1}+\delta \right){b}_{3}+\lambda \,{b}_{2}}\right)\\ & & \times \left({c}_{2}+\displaystyle \frac{\left(\lambda \,{b}_{2}+\left(-{b}_{1}+\delta \right){b}_{3}M\right){c}_{1}}{\left({b}_{1}\delta -{\delta }^{2}\right)M}\right.\\ & & {\left.\times \exp \left(\pm \displaystyle \frac{\delta \sqrt{-3{b}_{3}\left(-{b}_{1}+\delta \right)}M\eta }{M\left(-{b}_{1}+\delta \right){b}_{3}+\lambda {b}_{2}}\right)\right)}^{-1},\end{array}\end{eqnarray}$where $\delta =\sqrt{\left(4{k}^{2}{\rho }_{1}-4k\omega {\rho }_{2}+4\omega \right){b}_{2}+{b}_{1}^{2}}$ and $\lambda \,=2\,k{\rho }_{1}{\rho }_{2}-\omega \,{\rho }_{2}^{2}+M{\rho }_{1}$.

The parameters c1 and c2 could be randomly chosen. By setting ${c}_{2}=\tfrac{\lambda \,{b}_{2}+\left(-{b}_{1}+\delta \right){b}_{3}M}{\left({b}_{1}\delta -{\delta }^{2}\right)M}{c}_{1}$, we obtain$\begin{eqnarray}\begin{array}{rcl}{P}_{1}(\eta ) & = & \mp \displaystyle \frac{\sqrt{-{b}_{1}+\delta }}{\sqrt{2{b}_{2}}}-\,\displaystyle \frac{3{b}_{3}\delta \,\sqrt{-2\,{b}_{1}+2\,\delta }M}{\sqrt{{b}_{2}}\left(2\left(-{b}_{1}+\delta \right){b}_{3}M+2\,\lambda \,{b}_{2}\right)}\\ & & \times \left(1\pm \tanh \left(\displaystyle \frac{\delta \,\sqrt{-3\,{b}_{3}\left(-{b}_{1}+\delta \right)}M\eta }{2M\left(-{b}_{1}+\delta \right){b}_{3}+2\lambda \,{b}_{2}}+{\eta }_{0}\right)\right),\end{array}\end{eqnarray}$where η0 is an arbitrary constant. Accordingly, we have the following dark 1-soliton solution:$\begin{eqnarray}\begin{array}{l}q(x,t)=\left\{\mp \displaystyle \frac{\sqrt{-{b}_{1}+\delta }}{\sqrt{2{b}_{2}}}\right.\\ \,-\,\displaystyle \frac{3{b}_{3}\delta \,\sqrt{-2\,{b}_{1}+2\,\delta }M}{\sqrt{{b}_{2}}\left(2\left(-{b}_{1}+\delta \right){b}_{3}M+2\,\lambda \,{b}_{2}\right)}\\ \left.\,\times \left(1\pm \tanh \left(\displaystyle \frac{\delta \,\sqrt{-3\,{b}_{3}\left(-{b}_{1}+\delta \right)}M\eta }{2M\left(-{b}_{1}+\delta \right){b}_{3}+2\lambda \,{b}_{2}}+{\eta }_{0}\right)\right)\right\}\\ \,\times {{\rm{e}}}^{{\rm{i}}\left(-\kappa x+\omega t+{\theta }_{0}\right)}.\end{array}\end{eqnarray}$Similarly, by setting ${c}_{2}=-\tfrac{\lambda \,{b}_{2}+\left(-{b}_{1}+\delta \right){b}_{3}M}{\left({b}_{1}\delta -{\delta }^{2}\right)M}{c}_{1}$, we obtain$\begin{eqnarray}\begin{array}{rcl}{P}_{2}(\eta ) & = & \mp \displaystyle \frac{\sqrt{-{b}_{1}+\delta }}{\sqrt{2{b}_{2}}}-\,\displaystyle \frac{3{b}_{3}\delta \,\sqrt{-2\,{b}_{1}+2\,\delta }M}{\sqrt{{b}_{2}}\left(2\left(-{b}_{1}+\delta \right){b}_{3}M+2\,\lambda \,{b}_{2}\right)}\\ & & \times \left(1\pm \coth \left(\displaystyle \frac{\delta \,\sqrt{-3\,{b}_{3}\left(-{b}_{1}+\delta \right)}M\eta }{2M\left(-{b}_{1}+\delta \right){b}_{3}+2\lambda \,{b}_{2}}+{\eta }_{0}\right)\right),\end{array}\end{eqnarray}$where η0 is an arbitrary constant. Therefore, we obtain the following singular 1-soliton solution:$\begin{eqnarray}\begin{array}{l}q(x,t)=\left\{\mp \displaystyle \frac{\sqrt{-{b}_{1}+\delta }}{\sqrt{2{b}_{2}}}\right.\\ \,-\,\displaystyle \frac{3{b}_{3}\delta \,\sqrt{-2\,{b}_{1}+2\,\delta }M}{\sqrt{{b}_{2}}\left(2\left(-{b}_{1}+\delta \right){b}_{3}M+2\,\lambda \,{b}_{2}\right)}\\ \left.\,\times \left(1\pm \coth \left(\displaystyle \frac{\delta \,\sqrt{-3\,{b}_{3}\left(-{b}_{1}+\delta \right)}M\eta }{2M\left(-{b}_{1}+\delta \right){b}_{3}+2\lambda \,{b}_{2}}+{\eta }_{0}\right)\right)\right\}\\ \,\times {{\rm{e}}}^{{\rm{i}}\left(-\kappa x+\omega t+{\theta }_{0}\right)}.\end{array}\end{eqnarray}$

Case 3. If ${A}_{0}=\pm \tfrac{\sqrt{-{b}_{1}-\sqrt{\left(4{k}^{2}{\rho }_{1}-4k\omega {\rho }_{2}+4\omega \right){b}_{2}+{b}_{1}^{2}}}}{\sqrt{2{b}_{2}}}$ and ${A}_{1}=\mp \tfrac{\sqrt{-6{b}_{3}}}{\sqrt{{b}_{2}}}$. Substituting the values of ${A}_{0},{A}_{1},\psi (\eta )$ and $\psi ^{\prime} (\eta )$ into equation (10), the exact solution of equation (9) is as follows:

$\begin{eqnarray}\begin{array}{rcl}P(\eta ) & = & \mp \displaystyle \frac{\sqrt{-{b}_{1}-\delta }}{\sqrt{2{b}_{2}}}\pm \displaystyle \frac{3\sqrt{2}{b}_{3}{c}_{1}}{\sqrt{-{b}_{2}({b}_{1}+\delta )}}\\ & & \times \exp \left(\pm \displaystyle \frac{\delta \,\sqrt{3\,{b}_{3}\left({b}_{1}+\delta \right)}M\eta }{-M\left({b}_{1}+\delta \right){b}_{3}+\lambda \,{b}_{2}}\right)\\ & & \times \left({c}_{2}+\displaystyle \frac{\left(\lambda \,{b}_{2}-\left({b}_{1}+\delta \right){b}_{3}M\right){c}_{1}}{-\left({b}_{1}\delta +{\delta }^{2}\right)M}\right.\\ & & {\left.\times \exp \left(\pm \displaystyle \frac{\delta \sqrt{3{b}_{3}\left({b}_{1}+\delta \right)}M\eta }{-M\left({b}_{1}+\delta \right){b}_{3}+\lambda {b}_{2}}\right)\right)}^{-1},\end{array}\end{eqnarray}$where $\delta =\sqrt{\left(4{k}^{2}{\rho }_{1}-4k\omega {\rho }_{2}+4\omega \right){b}_{2}+{b}_{1}^{2}}$ and $\lambda =2\,k{\rho }_{1}{\rho }_{2}\,-\omega \,{\rho }_{2}^{2}+M{\rho }_{1}$.

The parameters c1 and c2 could be randomly chosen. By setting ${c}_{2}=\tfrac{\lambda \,{b}_{2}-\left({b}_{1}+\delta \right){b}_{3}M}{-\left({b}_{1}\delta +{\delta }^{2}\right)M}{c}_{1}$, we obtain$\begin{eqnarray}\begin{array}{rcl}{P}_{1}(\eta ) & = & \mp \displaystyle \frac{\sqrt{-{b}_{1}-\delta }}{\sqrt{2{b}_{2}}}+\,\displaystyle \frac{3{b}_{3}\delta \,\sqrt{-2\,{b}_{1}-2\,\delta }M}{\sqrt{{b}_{2}}\left(2\left(-{b}_{1}-\delta \right){b}_{3}M+2\,\lambda \,{b}_{2}\right)}\\ & & \times \left(1\pm \tanh \left(\displaystyle \frac{\delta \,\sqrt{3\,{b}_{3}\left({b}_{1}+\delta \right)}M\eta }{-2M\left({b}_{1}+\delta \right){b}_{3}+2\lambda \,{b}_{2}}\right)\right),\end{array}\end{eqnarray}$where η0 is an arbitrary constant. Accordingly, we have the following dark 1-soliton solution:$\begin{eqnarray}\begin{array}{rcl}q(x,t) & = & \left\{\mp \displaystyle \frac{\sqrt{-{b}_{1}-\delta }}{\sqrt{2{b}_{2}}}\right.\\ & & +\,\displaystyle \frac{3{b}_{3}\delta \,\sqrt{-2\,{b}_{1}-2\,\delta }M}{\sqrt{{b}_{2}}\left(2\left(-{b}_{1}-\delta \right){b}_{3}M+2\,\lambda \,{b}_{2}\right)}\\ & & \left.\times \left(1\pm \tanh \left(\displaystyle \frac{\delta \,\sqrt{3\,{b}_{3}\left({b}_{1}+\delta \right)}M\eta }{-2M\left({b}_{1}+\delta \right){b}_{3}+2\lambda \,{b}_{2}}\right)\right)\right\}\\ & & \times {{\rm{e}}}^{{\rm{i}}\left(-\kappa x+\omega t+{\theta }_{0}\right)}.\end{array}\end{eqnarray}$Similarly, by setting ${c}_{2}=-\tfrac{\lambda \,{b}_{2}-\left({b}_{1}+\delta \right){b}_{3}M}{-\left({b}_{1}\delta +{\delta }^{2}\right)M}{c}_{1}$, we obtain$\begin{eqnarray}\begin{array}{rcl}{P}_{2}(\eta ) & = & \mp \displaystyle \frac{\sqrt{-{b}_{1}-\delta }}{\sqrt{2{b}_{2}}}+\,\displaystyle \frac{3{b}_{3}\delta \,\sqrt{-2\,{b}_{1}-2\,\delta }M}{\sqrt{{b}_{2}}\left(2\left(-{b}_{1}-\delta \right){b}_{3}M+2\,\lambda \,{b}_{2}\right)}\\ & & \times \left(1\pm \coth \left(\displaystyle \frac{\delta \,\sqrt{3\,{b}_{3}\left({b}_{1}+\delta \right)}M\eta }{-2M\left({b}_{1}+\delta \right){b}_{3}+2\lambda \,{b}_{2}}\right)\right),\end{array}\end{eqnarray}$where η0 is an arbitrary constant. Therefore, we obtain the following singular 1-soliton solution:$\begin{eqnarray}\begin{array}{rcl}q(x,t) & = & \left\{\mp \displaystyle \frac{\sqrt{-{b}_{1}-\delta }}{\sqrt{2{b}_{2}}}\right.\\ & & +\,\displaystyle \frac{3{b}_{3}\delta \,\sqrt{-2\,{b}_{1}-2\,\delta }M}{\sqrt{{b}_{2}}\left(2\left(-{b}_{1}-\delta \right){b}_{3}M+2\,\lambda \,{b}_{2}\right)}\\ & & \left.\times \left(1\pm \coth \left(\displaystyle \frac{\delta \,\sqrt{3\,{b}_{3}\left({b}_{1}+\delta \right)}M\eta }{-2M\left({b}_{1}+\delta \right){b}_{3}+2\lambda \,{b}_{2}}\right)\right)\right\}\\ & & \times {{\rm{e}}}^{{\rm{i}}\left(-\kappa x+\omega t+{\theta }_{0}\right)}.\end{array}\end{eqnarray}$Note that the wave variable is $\eta =x-\left(\tfrac{{\rho }_{2}\omega -2{\rho }_{1}\kappa }{1-{\rho }_{2}\kappa }\right)t$ in all the above analytical solutions from cases 2 and 3.

3. Some graphical illustrations

In this section, we give some graphical illustrations of the acquired solutions of our equations with the aid of Mathematica. The two-dimensional and three-dimensional plots of certain solutions are presented in figures 1–4.

4. Results and discussion

One of the most powerful integration schemes has been used in this article to construct some new dark and singular 1-soliton solutions of the nonlocal nonlinear Schrödinger equation (NNLSE) with competing weakly nonlocal nonlinearity and parabolic law nonlinearity. By comparing our outcomes with those obtained by some existing methods in the previous literature [13], one can observe that this approach has successfully constructed new complex wave solutions that have not been accounted for earlier. All of these solutions are verified by direct substitution via the commercial software Mathematica. The geometrical shapes (numerical simulations) for certain solutions are depicted in figures 14 at particular values of the free parameters; they help us to understand the complex physical phenomena of the dynamical model under consideration. Numerical solvers can count on the constructed solutions to validate their solutions as well as to study the stability analysis. The N1-soliton solutions (28), (30), (33) and (35) signify solitary waves that maintain their identity upon interaction. Figures 1 and 2 elaborate both cases of the dark 1-soliton solutions (28) in two- and three-dimensional shapes by taking some suitable choices of the parameters. In figure 3, the graphical shapes of the singular 1-soliton solution (30) are shown in two and three dimensions at specific values of the parameters. The dark 1-soliton solution (33) is depicted in figure 4 in two- and three-dimensional shapes by taking suitable values of the free parameters.

Figure 1.

New window|Download| PPT slide
Figure 1.Graph of case 2 for (28) at b2 = 1, δ = 1, κ = 0.2, λ = 0.1, b1 = 0.1, ν = 0.1, θ0 = 5, M = 0.2, ω = 0.1, b3 = 0.2.


Figure 2.

New window|Download| PPT slide
Figure 2.Graph of case 2 for (30) at b2 = 1, δ = 1, κ = 0.2, λ = 0.1, b1 = 0.1, ν = 0.1, θ0 = 5, M = 0.2, ω = 0.1, b3 = 0.2.


Figure 3.

New window|Download| PPT slide
Figure 3.Graph of case 3 for (33) at b2 = 1, δ = 1, κ = 0.2, λ = 0.1, b1 = 0.1, ν = 0.1, θ0 = 5, M = 0.2, ω = 0.1, b3 = 0.2.


Figure 4.

New window|Download| PPT slide
Figure 4.Graph of case 3 for (35) at b2 = 2, δ = 0.1, κ = 0.1, λ = 0.01, b1 = 0.1, ν = 0.1, θ0 = 0.5, M = 0.1, ω = 0.1, b3 = 0.2.


5. Conclusions

In this work, the NNLSE with competing weakly nonlocal nonlinearity and parabolic law nonlinearity is studied using the modified simple equation method. It should be noted that all the obtained solutions in the current work are dark and singular 1-soliton solutions. This strong integration approach is very effective when other schemes fail to find soliton solutions. Thus, this methodology will be studied in future for various other situations in various types of NNLSEs.

Reference By original order
By published year
By cited within times
By Impact factor

Wang G Mirzazadeh M Yao M Zhou Q 2016 Optical solitons under competing weakly nonlocal nonlinearity and cubic–quintic nonlinearities
Optoelectron. Adv. Mater. Rapid Commun. 10 807810

[Cited within: 2]

Mirzazadeh M Eslami M Savescu M Bhrawy A H Alshaery A A Hilal E M Biswas A 2015 Optical solitons in DWDM system with spatio-temporal dispersion
J. Nonlinear Opt. Phys. Mater. 241550006

DOI:10.1142/S021886351550006X [Cited within: 3]

Zhou Q Liu L Zhang H Mirzazadeh M Bhrawy A H Zerrad E Moshokoa S Biswas A 2016 Dark and singular optical solitons with competing nonlocal nonlinearities
Opt. Appl. 46 7986

DOI:10.5277/oa160107 [Cited within: 2]

Yang C Zhou Q Triki H Mirzazadeh M Ekici M Liu W J Biswas A Belic M 2019 Bright soliton interactions in a (2+1) -dimensional fourth-order variable-coefficient nonlinear Schrödinger equation for the Heisenberg ferromagnetic spin chain
Nonlinear Dyn. 95 983994

DOI:10.1007/s11071-018-4609-z [Cited within: 1]

Rezazadeh H Seadawy A R Eslami M Mirzazadeh M 2019 Generalized solitary wave solutions to the time fractional generalized Hirota–Satsuma coupled KdV via new definition for wave transformation
J. Ocean Eng. Sci. 4 7784

DOI:10.1016/j.joes.2019.01.002

Hosseini K Osman M S Mirzazadeh M Rabiei F 2020 Investigation of different wave structures to the generalized third-order nonlinear Schrödinger equation
Optik 206164259

DOI:10.1016/j.ijleo.2020.164259

Liu X Triki H Zhou Q Mirzazadeh M Liu W Biswas A Belic M 2019 Generation and control of multiple solitons under the influence of parameters
Nonlinear Dyn. 95 143150

DOI:10.1007/s11071-018-4556-8

Liu S Zhou Q Biswas A Liu W 2019 Phase-shift controlling of three solitons in dispersion-decreasing fibers
Nonlinear Dyn. 98 395401

DOI:10.1007/s11071-019-05200-5

Liu W Zhang Y Wazwaz A M Zhou Q 2019 Analytic study on triple-S, triple-triangle structure interactions for solitons in inhomogeneous multi-mode fiber
Appl. Math. Comput. 361 325331

DOI:10.1016/j.amc.2019.05.046

Guan X Liu W Zhou Q Biswas A 2020 Some lump solutions for a generalized (3+1)-dimensional Kadomtsev–Petviashvili equation
Appl. Math. Comput. 366124757

DOI:10.1016/j.amc.2019.124757

Yan Y Liu W 2019 Stable transmission of solitons in the complex cubic–quintic Ginzburg–Landau equation with nonlinear gain and higher-order effects
Appl. Math. Lett. 98 171176

DOI:10.1016/j.aml.2019.06.008

Attia R A Lu D Ak T Khater M M 2020 Optical wave solutions of the higher-order nonlinear Schrödinger equation with the non-Kerr nonlinear term via modified Khater method
Mod. Phys. Lett. B 342050044

DOI:10.1142/S021798492050044X

Khater M M Attia R A Abdel-Aty A H Abdou M A Eleuch H Lu D 2020 Analytical and semi-analytical ample solutions of the higher-order nonlinear Schrödinger equation with the non-Kerr nonlinear term
Results Phys. 16103000

DOI:10.1016/j.rinp.2020.103000

Qian L Attia R A Qiu Y Lu D Khater M M 2019 The shock peakon wave solutions of the general Degasperis–Procesi equation
Int. J. Mod. Phys. B 331950351

DOI:10.1142/S021797921950351X

Rezazadeh H Korkmaz A Khater M M Eslami M Lu D Attia R A 2019 New exact traveling wave solutions of biological population model via the extended rational sinh-cosh method and the modified Khater method
Mod. Phys. Lett. B 331950338

DOI:10.1142/S021798491950338X

Sulaiman T A 2020 Three-component coupled nonlinear Schrödinger equation: optical soliton and modulation instability analysis
Phys. Scr. 95065201

DOI:10.1088/1402-4896/ab7c77

Sulaiman T A Bulut H 2020 Optical solitons and modulation instability analysis of the (1+1)-dimensional coupled nonlinear Schrödinger equation
Commun. Theor. Phys. 72025003

DOI:10.1088/1572-9494/ab617e

Sulaiman T A Bulut H Yokus A Baskonus H M 2019 On the exact and numerical solutions to the coupled Boussinesq equation arising in ocean engineering
Indian J. Phys. 93 647656

DOI:10.1007/s12648-018-1322-1

Yokus A Sulaiman T A Bulut H 2018 On the analytical and numerical solutions of the Benjamin–Bona–Mahony equation
Opt. Quantum Electron. 50 31

DOI:10.1007/s11082-017-1303-1

Yokus A Sulaiman T A Baskonus H M Atmaca S P 2018 On the exact and numerical solutions to a nonlinear model arising in mathematical biology
ITM Web of Conferences 22 01061

DOI:10.1051/itmconf/20182201061

Kaya D Gülbahar S Yokuş A Gülbahar M 2018 Solutions of the fractional combined KdV-mKdV equation with collocation method using radial basis function and their geometrical obstructions
Adv. Differ. Equ. 2018 77

DOI:10.1186/s13662-018-1531-0

Ali K K Rezazadeh H Talarposhti R A Bekir A 2020 New soliton solutions for resonant nonlinear Schrödinger's equation having full nonlinearity
Int. J. Mod. Phys. B 34 2050032

DOI:10.1142/S0217979220500320

Seadawy A R Ali K K Nuruddeen R I 2019 A variety of soliton solutions for the fractional Wazwaz–Benjamin–Bona–Mahony equations
Results Phys. 12 22342241

DOI:10.1016/j.rinp.2019.02.064

Ali K K Nuruddeen R I Hadhoud A R 2018 New exact solitary wave solutions for the extended (3.1)-dimensional Jimbo–Miwa equations
Results Phys. 9 1216

DOI:10.1016/j.rinp.2018.01.073

Souleymanou A Ali K K Rezazadeh H Eslami M Mirzazadeh M Korkmaz A 2019 The propagation of waves in thin-film ferroelectric materials
Pramana 93 27

DOI:10.1007/s12043-019-1774-7

Miah M M Ali H S Akbar M A Seadawy A R 2019 New applications of the two variable (G’/G, 1/G)-expansion method for closed form traveling wave solutions of integro-differential equations
J. Ocean Eng. Sci. 4 132143

DOI:10.1016/j.joes.2019.03.001

Miah M M Seadawy A R Ali H S Akbar M A 2019 Further investigations to extract abundant new exact traveling wave solutions of some NLEEs
J. Ocean Eng. Sci. 4 387394

DOI:10.1016/j.joes.2019.06.004

Miah M M Ali H S Akbar M A Wazwaz A M 2017 Some applications of the (G’/G, 1/G)-expansion method to find new exact solutions of NLEEs
Eur. Phys. J. Plus 132 252

DOI:10.1140/epjp/i2017-11571-0

Habib M A Ali H S Miah M M Akbar M A 2019 The generalized Kudryashov method for new closed form traveling wave solutions to some NLEEs
AIMS Math. 4 896

DOI:10.3934/math.2019.3.896

Rezazadeh H Korkmaz A Eslami M Mirhosseini-Alizamini S M 2019 A large family of optical solutions to Kundu–Eckhaus model by a new auxiliary equation method
Opt. Quantum Electron. 51 84

DOI:10.1007/s11082-019-1801-4

Raza N Aslam M R Rezazadeh H 2019 Analytical study of resonant optical solitons with variable coefficients in Kerr and non-Kerr law media
Opt. Quantum Electron. 51 59

DOI:10.1007/s11082-019-1773-4

Shehata M S Rezazadeh H Zahran E H Tala-Tebue E Bekir A 2019 New optical soliton solutions of the perturbed Fokas–Lenells equation
Commun. Theor. Phys. 71 1275

DOI:10.1088/0253-6102/71/11/1275 [Cited within: 1]

Malfliet W Hereman W 1996 The tanh method: I. Exact solutions of nonlinear evolution and wave equations
Phys. Scr. 54 563

DOI:10.1088/0031-8949/54/6/003 [Cited within: 1]

Fan E 2000 Extended tanh-function method and its applications to nonlinear equations
Phys. Lett. A 277 212218

DOI:10.1016/S0375-9601(00)00725-8 [Cited within: 1]

Fan E Hona Y C 2002 Generalized tanh method extended to special types of nonlinear equations
Z. Naturforsch. A 57 692700

DOI:10.1515/zna-2002-0809 [Cited within: 1]

Raslan K R El-Danaf T S Ali K K 2017 Exact solution of the space-time fractional coupled EW and coupled MEW equations
Eur. Phys. J. Plus 132 319

DOI:10.1140/epjp/i2017-11590-9 [Cited within: 1]

Korkmaz A 2017 Exact solutions to (3 + 1) conformable time fractional Jimbo–Miwa, Zakharov–Kuznetsov and modified Zakharov–Kuznetsov equations
Commun. Theor. Phys. 67 479

DOI:10.1088/0253-6102/67/5/479

Korkmaz A Hosseini K 2017 Exact solutions of a nonlinear conformable time-fractional parabolic equation with exponential nonlinearity using reliable methods
Opt. Quantum Electron. 49 278

DOI:10.1007/s11082-017-1116-2 [Cited within: 1]

Zheng B 2015 Exact solutions for fractional partial differential equations by projective Riccati equation method
UPB Sci. Bull. Ser. A 77 99108

[Cited within: 1]

Yong C Biao L 2004 New exact travelling wave solutions for generalized zakharov-kuzentsov equations using general projective riccati equation method
Commun. Theor. Phys. 41 1

DOI:10.1088/0253-6102/41/1/1 [Cited within: 1]

Hafez M G Alam M N Akbar M A 2014 Exact traveling wave solutions to the Klein–Gordon equation using the novel (G’/G)-expansion method
Results Phys. 4 177184

DOI:10.1016/j.rinp.2014.09.001 [Cited within: 1]

Lu D Seadawy A R Khater M M 2018 Structure of solitary wave solutions of the nonlinear complex fractional generalized Zakharov dynamical system
Adv. Differ. Equ. 2018 266

DOI:10.1186/s13662-018-1734-4

Seadawy A R Lu D Khater M M 2017 New wave solutions for the fractional-order biological population model, time fractional burgers, Drinfel’d–Sokolov–Wilson and system of shallow water wave equations and their applications
Eur. J. Comput. Mech. 26 508524

DOI:10.1080/17797179.2017.1374233 [Cited within: 1]

Al-Amr M O El-Ganaini S 2017 New exact traveling wave solutions of the (4.1)-dimensional Fokas equation
Comput. Math. Appl. 74 12741287

DOI:10.1016/j.camwa.2017.06.020 [Cited within: 1]

Akter J Akbar M A 2015 Exact solutions to the Benney–Luke equation and the Phi-4 equations by using modified simple equation method
Results Phys. 5 125130

DOI:10.1016/j.rinp.2015.01.008 [Cited within: 1]

Al-Amr M O 2015 Exact solutions of the generalized (2+1)-dimensional nonlinear evolution equations via the modified simple equation method
Comput. Math. Appl. 69 390397

DOI:10.1016/j.camwa.2014.12.011 [Cited within: 1]

El-Ganaini S Al-Amr M O 2019 New abundant wave solutions of the conformable space-time fractional (4+1)-dimensional Fokas equation in water waves
Comput. Math. Appl. 78 20942106

DOI:10.1016/j.camwa.2019.03.050 [Cited within: 1]

相关话题/soliton solution dinger