N1-soliton solution for Schr【-逻*辑*与-】ouml;dinger equation with competing weakly nonlocal and parabol
本站小编 Free考研考试/2022-01-02
Mohammed O Al-Amr,1, Hadi Rezazadeh,2, Khalid K Ali,3, Alper Korkmazki,41Department of Mathematics, College of Computer Sciences and Mathematics, University of Mosul, Mosul 41002, Iraq 2Faculty of Engineering Technology, Amol University of Special Modern Technologies, Amol, Iran 3Mathematics Department, Faculty of Science, Al-Azhar University, Nasr-City, Cairo, Egypt 4Nord Staße 9, Weimar, Germany
Abstract The nonlocal nonlinear Schrödinger equation (NNLSE) with competing weakly nonlocal nonlinearity and parabolic law nonlinearity is explored in the current work. A powerful integration tool, which is a modified form of the simple equation method, is used to construct the dark and singular 1-soliton solutions. It is shown that the modified simple equation method provides an effective and powerful mathematical gadget for solving various types of NNLSEs. Keywords:Schrödinger equation;soliton;integrability;modified simple equation method
PDF (700KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite Cite this article Mohammed O Al-Amr, Hadi Rezazadeh, Khalid K Ali, Alper Korkmazki. N1-soliton solution for Schrödinger equation with competing weakly nonlocal and parabolic law nonlinearities. Communications in Theoretical Physics, 2020, 72(6): 065503- doi:10.1088/1572-9494/ab8a12
1. Introduction
The dimensionless form of the Schrödinger equation with nonlocal and cubic–quintic nonlinearities with spatio-temporal dispersion is given by$\begin{eqnarray}\begin{array}{l}{{\rm{i}}{q}}_{t}+{\rho }_{1}{q}_{{xx}}+{\rho }_{2}{q}_{{xt}}\\ \,+\left({b}_{1}{\left|q\right|}^{2}+{b}_{2}\,{\left|q\right|}^{4}\right)q\\ \,+{b}_{3}{\left({\left|q\right|}^{2}\right)}_{{xx}}q=0,\end{array}\end{eqnarray}$where q=q(x, t) is a complex-valued unknown function with slowly changing amplitude, ρi (i=1, 2) are the parameters with ρ1 being a diffraction coefficient, bj (j=1, 2, 3) are constant coefficients, and subscripts denote partial derivatives [1, 2]. The coefficient b3 denotes nonlocal weak nonlinearity as b1 and b2 are cubic and quintic nonlinear term coefficients, respectively [3]. ρ2 represents the coefficient of spatio-temporal dispersion [2]. This term is added to the model in order to satisfy the well-posedness against standard group-velocity dispersion [2].
So far various techniques have been proposed to set solutions in different function forms covering exponential, rational, hyperbolic functions and periodic and soliton solutions [4–32]. Many of these solutions are, in fact, based on predicting a solution with some unknown parameters and determining them by substitution into the governing model. Without any doubt, the $\tanh (.)$ method [33] is one of ancestors of all of those predicted solution approaches. Extended or generalized forms of this method were also used to solve many problems arising in various fields in engineering or in natural sciences [34, 35]. In the subsequent years, lots of smart methods have been derived. Most of them are based on some simple ordinary differential equations (ODEs), their structures and solutions. Various forms of Kudryashov’s approach have been used to solve many model equations [36–38]. Some methods are based on Riccati equations [39, 40]. The (G′/G)-expansion approach is also constructed on some ODE of second order [41–43]. Simple equation methods are also derived for some simple ODEs and the relations among derivative terms, dependent variables and their solutions [44, 45, 46, 47].
In the present paper, we derive a modified form of the simple equation approach that has many solutions in different forms. In the first stage, a compatible wave transform is implemented to reduce the governing equation to some ODE. Since the governing equation is in complex form, the resulting ODE is also derived in complex form. The constraints among the coefficients reduce the resulting system derived from imaginary and real parts of the equation to a unique ODE. In the final stage, the predicted solution is substituted into the resulting ODE after determination of its degree by the homogeneous balance routine. Many kinds of solutions are constructed in various forms covering hyperbolic and exponential function forms.
2. Mathematical Analysis
In order to solve the model, the following hypothesis is selected:$\begin{eqnarray}q(x,t)=P(\eta ){{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}\left(x,t\right)},\end{eqnarray}$where P(η) represents the shape of the pulse and$\begin{eqnarray}\eta =x-{vt},\end{eqnarray}$and the phase component is defined as$\begin{eqnarray}{\rm{\Phi }}\left(x,t\right)=-\kappa x+\omega t+{\theta }_{0},\end{eqnarray}$where κ, ω and θ0 represent the frequency, the wavenumber and the phase constant respectively.
Substituting (2) into equation (1) and decomposing into real and imaginary parts gives$\begin{eqnarray}\begin{array}{l}\left({\rho }_{1}-v{\rho }_{2}\right)P^{\prime\prime} -(\omega +{\rho }_{1}{\kappa }^{2}-\kappa \omega {\rho }_{2})P+{b}_{1}{P}^{3}\\ \,+\,{b}_{2}{P}^{5}+2{b}_{3}\left\{P{\left(P^{\prime} \right)}^{2}+{P}^{2}P^{\prime\prime} \right\}=0,\end{array}\end{eqnarray}$and$\begin{eqnarray}v-{\rho }_{2}\left(\kappa v+\omega \right)+2{\rho }_{1}\kappa =0.\end{eqnarray}$From (6), setting the coefficients of the linearly independent functions to zero gives the speed of the soliton as$\begin{eqnarray}v=\displaystyle \frac{{\rho }_{2}\omega -2{\rho }_{1}\kappa }{1-{\rho }_{2}\kappa }.\end{eqnarray}$There is a constraint$\begin{eqnarray}{\rho }_{2}\kappa \ne 1.\end{eqnarray}$By applying equation (7) in equation (5), we get$\begin{eqnarray}\begin{array}{l}\left({\rho }_{1}\,M-\left({\rho }_{2}\omega -2{\rho }_{1}\kappa \right){\rho }_{2}\right)P^{\prime\prime} \\ \,-\,M(\omega +{\rho }_{1}{\kappa }^{2}-\kappa \omega {\rho }_{2})P+{b}_{1}\,M\,{P}^{3}\\ \,+\,{b}_{2}\,M\,{P}^{5}+2{b}_{3}\,M\left\{P{\left(P^{\prime} \right)}^{2}+{P}^{2}P^{\prime\prime} \right\}=0,\end{array}\end{eqnarray}$where$\begin{eqnarray*}M=1-{\rho }_{2}\kappa .\end{eqnarray*}$Balancing P5 with P2P″ in equation (9), then we get N = 1.
2.1. Application of modified simple equation method
In order to handle equation (9) by means of the modified simple equation method, we assume that equation (9) possesses the following formal solution:$\begin{eqnarray}P(\eta )={A}_{0}+{A}_{1}\left(\displaystyle \frac{\psi ^{\prime} }{\psi }\right),\end{eqnarray}$where A0 and A1 are constants such that ${A}_{1}\ne 0$ , and P(η) is an unknown function to be identified. One can easily obtain$\begin{eqnarray}P^{\prime} ={A}_{1}\left[\displaystyle \frac{\psi ^{\prime\prime} }{\psi }-{\left(\displaystyle \frac{\psi ^{\prime} }{\psi }\right)}^{2}\right],\end{eqnarray}$$\begin{eqnarray}P^{\prime\prime} ={A}_{1}\left[\displaystyle \frac{\psi \prime\prime\prime }{\psi }-3\displaystyle \frac{\psi ^{\prime} \psi ^{\prime\prime} }{{\psi }^{2}}+2{\left(\displaystyle \frac{\psi ^{\prime} }{\psi }\right)}^{3}\right].\end{eqnarray}$By substituting equations (10)–(12) into equation (9) and equating the coefficients of ${\psi }^{0},{\psi }^{-1},{\psi }^{-2},{\psi }^{-3},{\psi }^{-4}$ and ψ−5 to zero, we get$\begin{eqnarray}-M\left({k}^{2}{\rho }_{1}-k\omega {\rho }_{2}+\omega \right){A}_{0}+{b}_{1}{{MA}}_{0}^{3}+{b}_{2}{{MA}}_{0}^{5}=0,\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}-\left(\left(\left(-2{A}_{0}^{2}{b}_{3}-{\rho }_{1}\right)M-2k{\rho }_{1}{\rho }_{2}+\omega {\rho }_{2}^{2}\right)\psi \prime\prime\prime \right.\\ \left.+\,M\psi ^{\prime} \left(-5{A}_{0}^{4}{b}_{2}+{k}^{2}{\rho }_{1}-k\omega {\rho }_{2}-3{A}_{0}^{2}{b}_{1}+\omega \right)\right){A}_{1}=0,\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}-3{A}_{1}\left(\displaystyle \frac{-4}{3}M\psi \prime\prime\prime \psi ^{\prime} {A}_{0}{A}_{1}{b}_{3}-\displaystyle \frac{2}{3}M{\left(\psi ^{\prime\prime} \right)}^{2}{A}_{0}{A}_{1}{b}_{3}\right.\\ \,+\,\left(\left(2{A}_{0}^{2}{b}_{3}+{\rho }_{1}\right)M+2k{\rho }_{1}{\rho }_{2}-\omega {\rho }_{2}^{2}\right)\psi ^{\prime} \psi ^{\prime\prime} \\ \left.\,-\,\displaystyle \frac{10}{3}{A}_{0}{A}_{1}{\left(\psi ^{\prime} \right)}^{2}M\left({A}_{0}^{2}{b}_{2}+\displaystyle \frac{3}{10}{b}_{1}\right)\right)=0,\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}2\left(M\psi \prime\prime\prime \psi ^{\prime} {A}_{1}^{2}{b}_{3}+M{\left(\psi ^{\prime\prime} \right)}^{2}{A}_{1}^{2}{b}_{3}-8M\psi ^{\prime} \psi ^{\prime\prime} {A}_{0}{A}_{1}{b}_{3}\right.\\ \,+\,\left(\left(\left(5{A}_{0}^{2}{b}_{2}+\displaystyle \frac{1}{2}{b}_{1}\right){A}_{1}^{2}+2{A}_{0}^{2}{b}_{3}+{\rho }_{1}\right)M\right.\\ \,+\,\left.\left.2k{\rho }_{1}{\rho }_{2}-\omega {\rho }_{2}^{2}\right){\left(\psi ^{\prime} \right)}^{2}\Space{0ex}{3.4ex}{0ex}\right){A}_{1}\psi ^{\prime} =0,\end{array}\end{eqnarray}$$\begin{eqnarray}5{A}_{1}^{2}M{\left(\psi ^{\prime} \right)}^{3}\left(-2\psi ^{\prime\prime} {A}_{1}{b}_{3}+{A}_{0}\psi ^{\prime} \left({A}_{1}^{2}{b}_{2}+2{b}_{3}\right)\right)=0,\end{eqnarray}$$\begin{eqnarray}M{\left(\psi ^{\prime} \right)}^{5}{A}_{1}^{3}\left({A}_{1}^{2}{b}_{2}+6{b}_{3}\right)=0.\end{eqnarray}$From equations (13) and (18) we obtain$\begin{eqnarray}\begin{array}{rcl}{A}_{0} & = & 0,\mp \displaystyle \frac{\sqrt{-{b}_{1}+\sqrt{\left(4{k}^{2}{\rho }_{1}-4k\omega {\rho }_{2}+4\omega \right){b}_{2}+{b}_{1}^{2}}}}{\sqrt{2{b}_{2}}},\\ & & \mp \displaystyle \frac{\sqrt{-{b}_{1}-\sqrt{\left(4{k}^{2}{\rho }_{1}-4k\omega {\rho }_{2}+4\omega \right){b}_{2}+{b}_{1}^{2}}}}{\sqrt{2{b}_{2}}},\end{array}\end{eqnarray}$and$\begin{eqnarray}{A}_{1}=\mp \displaystyle \frac{\sqrt{-6{b}_{3}}}{\sqrt{{b}_{2}}}\end{eqnarray}$provided that ${b}_{2}\ne 0$.
Case 1. If A0=0 and ${A}_{1}=\mp \tfrac{\sqrt{-6{b}_{3}}}{\sqrt{{b}_{2}}}$. We obtain a trivial solution. Hence, this case is refused.
Case 2. If ${A}_{0}=\mp \tfrac{\sqrt{-{b}_{1}+\sqrt{\left(4{k}^{2}{\rho }_{1}-4k\omega {\rho }_{2}+4\omega \right){b}_{2}+{b}_{1}^{2}}}}{\sqrt{2{b}_{2}}}$ and ${A}_{1}=\mp \tfrac{\sqrt{-6{b}_{3}}}{\sqrt{{b}_{2}}}$. Substituting the values of ${A}_{0},{A}_{1},\psi (\eta )$ and $\psi ^{\prime} (\eta )$ into equation (10), the exact solution of equation (9) is as follows:
The parameters c1 and c2 could be randomly chosen. By setting ${c}_{2}=\tfrac{\lambda \,{b}_{2}+\left(-{b}_{1}+\delta \right){b}_{3}M}{\left({b}_{1}\delta -{\delta }^{2}\right)M}{c}_{1}$, we obtain$\begin{eqnarray}\begin{array}{rcl}{P}_{1}(\eta ) & = & \mp \displaystyle \frac{\sqrt{-{b}_{1}+\delta }}{\sqrt{2{b}_{2}}}-\,\displaystyle \frac{3{b}_{3}\delta \,\sqrt{-2\,{b}_{1}+2\,\delta }M}{\sqrt{{b}_{2}}\left(2\left(-{b}_{1}+\delta \right){b}_{3}M+2\,\lambda \,{b}_{2}\right)}\\ & & \times \left(1\pm \tanh \left(\displaystyle \frac{\delta \,\sqrt{-3\,{b}_{3}\left(-{b}_{1}+\delta \right)}M\eta }{2M\left(-{b}_{1}+\delta \right){b}_{3}+2\lambda \,{b}_{2}}+{\eta }_{0}\right)\right),\end{array}\end{eqnarray}$where η0 is an arbitrary constant. Accordingly, we have the following dark 1-soliton solution:$\begin{eqnarray}\begin{array}{l}q(x,t)=\left\{\mp \displaystyle \frac{\sqrt{-{b}_{1}+\delta }}{\sqrt{2{b}_{2}}}\right.\\ \,-\,\displaystyle \frac{3{b}_{3}\delta \,\sqrt{-2\,{b}_{1}+2\,\delta }M}{\sqrt{{b}_{2}}\left(2\left(-{b}_{1}+\delta \right){b}_{3}M+2\,\lambda \,{b}_{2}\right)}\\ \left.\,\times \left(1\pm \tanh \left(\displaystyle \frac{\delta \,\sqrt{-3\,{b}_{3}\left(-{b}_{1}+\delta \right)}M\eta }{2M\left(-{b}_{1}+\delta \right){b}_{3}+2\lambda \,{b}_{2}}+{\eta }_{0}\right)\right)\right\}\\ \,\times {{\rm{e}}}^{{\rm{i}}\left(-\kappa x+\omega t+{\theta }_{0}\right)}.\end{array}\end{eqnarray}$Similarly, by setting ${c}_{2}=-\tfrac{\lambda \,{b}_{2}+\left(-{b}_{1}+\delta \right){b}_{3}M}{\left({b}_{1}\delta -{\delta }^{2}\right)M}{c}_{1}$, we obtain$\begin{eqnarray}\begin{array}{rcl}{P}_{2}(\eta ) & = & \mp \displaystyle \frac{\sqrt{-{b}_{1}+\delta }}{\sqrt{2{b}_{2}}}-\,\displaystyle \frac{3{b}_{3}\delta \,\sqrt{-2\,{b}_{1}+2\,\delta }M}{\sqrt{{b}_{2}}\left(2\left(-{b}_{1}+\delta \right){b}_{3}M+2\,\lambda \,{b}_{2}\right)}\\ & & \times \left(1\pm \coth \left(\displaystyle \frac{\delta \,\sqrt{-3\,{b}_{3}\left(-{b}_{1}+\delta \right)}M\eta }{2M\left(-{b}_{1}+\delta \right){b}_{3}+2\lambda \,{b}_{2}}+{\eta }_{0}\right)\right),\end{array}\end{eqnarray}$where η0 is an arbitrary constant. Therefore, we obtain the following singular 1-soliton solution:$\begin{eqnarray}\begin{array}{l}q(x,t)=\left\{\mp \displaystyle \frac{\sqrt{-{b}_{1}+\delta }}{\sqrt{2{b}_{2}}}\right.\\ \,-\,\displaystyle \frac{3{b}_{3}\delta \,\sqrt{-2\,{b}_{1}+2\,\delta }M}{\sqrt{{b}_{2}}\left(2\left(-{b}_{1}+\delta \right){b}_{3}M+2\,\lambda \,{b}_{2}\right)}\\ \left.\,\times \left(1\pm \coth \left(\displaystyle \frac{\delta \,\sqrt{-3\,{b}_{3}\left(-{b}_{1}+\delta \right)}M\eta }{2M\left(-{b}_{1}+\delta \right){b}_{3}+2\lambda \,{b}_{2}}+{\eta }_{0}\right)\right)\right\}\\ \,\times {{\rm{e}}}^{{\rm{i}}\left(-\kappa x+\omega t+{\theta }_{0}\right)}.\end{array}\end{eqnarray}$
Case 3. If ${A}_{0}=\pm \tfrac{\sqrt{-{b}_{1}-\sqrt{\left(4{k}^{2}{\rho }_{1}-4k\omega {\rho }_{2}+4\omega \right){b}_{2}+{b}_{1}^{2}}}}{\sqrt{2{b}_{2}}}$ and ${A}_{1}=\mp \tfrac{\sqrt{-6{b}_{3}}}{\sqrt{{b}_{2}}}$. Substituting the values of ${A}_{0},{A}_{1},\psi (\eta )$ and $\psi ^{\prime} (\eta )$ into equation (10), the exact solution of equation (9) is as follows:
The parameters c1 and c2 could be randomly chosen. By setting ${c}_{2}=\tfrac{\lambda \,{b}_{2}-\left({b}_{1}+\delta \right){b}_{3}M}{-\left({b}_{1}\delta +{\delta }^{2}\right)M}{c}_{1}$, we obtain$\begin{eqnarray}\begin{array}{rcl}{P}_{1}(\eta ) & = & \mp \displaystyle \frac{\sqrt{-{b}_{1}-\delta }}{\sqrt{2{b}_{2}}}+\,\displaystyle \frac{3{b}_{3}\delta \,\sqrt{-2\,{b}_{1}-2\,\delta }M}{\sqrt{{b}_{2}}\left(2\left(-{b}_{1}-\delta \right){b}_{3}M+2\,\lambda \,{b}_{2}\right)}\\ & & \times \left(1\pm \tanh \left(\displaystyle \frac{\delta \,\sqrt{3\,{b}_{3}\left({b}_{1}+\delta \right)}M\eta }{-2M\left({b}_{1}+\delta \right){b}_{3}+2\lambda \,{b}_{2}}\right)\right),\end{array}\end{eqnarray}$where η0 is an arbitrary constant. Accordingly, we have the following dark 1-soliton solution:$\begin{eqnarray}\begin{array}{rcl}q(x,t) & = & \left\{\mp \displaystyle \frac{\sqrt{-{b}_{1}-\delta }}{\sqrt{2{b}_{2}}}\right.\\ & & +\,\displaystyle \frac{3{b}_{3}\delta \,\sqrt{-2\,{b}_{1}-2\,\delta }M}{\sqrt{{b}_{2}}\left(2\left(-{b}_{1}-\delta \right){b}_{3}M+2\,\lambda \,{b}_{2}\right)}\\ & & \left.\times \left(1\pm \tanh \left(\displaystyle \frac{\delta \,\sqrt{3\,{b}_{3}\left({b}_{1}+\delta \right)}M\eta }{-2M\left({b}_{1}+\delta \right){b}_{3}+2\lambda \,{b}_{2}}\right)\right)\right\}\\ & & \times {{\rm{e}}}^{{\rm{i}}\left(-\kappa x+\omega t+{\theta }_{0}\right)}.\end{array}\end{eqnarray}$Similarly, by setting ${c}_{2}=-\tfrac{\lambda \,{b}_{2}-\left({b}_{1}+\delta \right){b}_{3}M}{-\left({b}_{1}\delta +{\delta }^{2}\right)M}{c}_{1}$, we obtain$\begin{eqnarray}\begin{array}{rcl}{P}_{2}(\eta ) & = & \mp \displaystyle \frac{\sqrt{-{b}_{1}-\delta }}{\sqrt{2{b}_{2}}}+\,\displaystyle \frac{3{b}_{3}\delta \,\sqrt{-2\,{b}_{1}-2\,\delta }M}{\sqrt{{b}_{2}}\left(2\left(-{b}_{1}-\delta \right){b}_{3}M+2\,\lambda \,{b}_{2}\right)}\\ & & \times \left(1\pm \coth \left(\displaystyle \frac{\delta \,\sqrt{3\,{b}_{3}\left({b}_{1}+\delta \right)}M\eta }{-2M\left({b}_{1}+\delta \right){b}_{3}+2\lambda \,{b}_{2}}\right)\right),\end{array}\end{eqnarray}$where η0 is an arbitrary constant. Therefore, we obtain the following singular 1-soliton solution:$\begin{eqnarray}\begin{array}{rcl}q(x,t) & = & \left\{\mp \displaystyle \frac{\sqrt{-{b}_{1}-\delta }}{\sqrt{2{b}_{2}}}\right.\\ & & +\,\displaystyle \frac{3{b}_{3}\delta \,\sqrt{-2\,{b}_{1}-2\,\delta }M}{\sqrt{{b}_{2}}\left(2\left(-{b}_{1}-\delta \right){b}_{3}M+2\,\lambda \,{b}_{2}\right)}\\ & & \left.\times \left(1\pm \coth \left(\displaystyle \frac{\delta \,\sqrt{3\,{b}_{3}\left({b}_{1}+\delta \right)}M\eta }{-2M\left({b}_{1}+\delta \right){b}_{3}+2\lambda \,{b}_{2}}\right)\right)\right\}\\ & & \times {{\rm{e}}}^{{\rm{i}}\left(-\kappa x+\omega t+{\theta }_{0}\right)}.\end{array}\end{eqnarray}$Note that the wave variable is $\eta =x-\left(\tfrac{{\rho }_{2}\omega -2{\rho }_{1}\kappa }{1-{\rho }_{2}\kappa }\right)t$ in all the above analytical solutions from cases 2 and 3.
3. Some graphical illustrations
In this section, we give some graphical illustrations of the acquired solutions of our equations with the aid of Mathematica. The two-dimensional and three-dimensional plots of certain solutions are presented in figures 1–4.
4. Results and discussion
One of the most powerful integration schemes has been used in this article to construct some new dark and singular 1-soliton solutions of the nonlocal nonlinear Schrödinger equation (NNLSE) with competing weakly nonlocal nonlinearity and parabolic law nonlinearity. By comparing our outcomes with those obtained by some existing methods in the previous literature [1–3], one can observe that this approach has successfully constructed new complex wave solutions that have not been accounted for earlier. All of these solutions are verified by direct substitution via the commercial software Mathematica. The geometrical shapes (numerical simulations) for certain solutions are depicted in figures 1–4 at particular values of the free parameters; they help us to understand the complex physical phenomena of the dynamical model under consideration. Numerical solvers can count on the constructed solutions to validate their solutions as well as to study the stability analysis. The N1-soliton solutions (28), (30), (33) and (35) signify solitary waves that maintain their identity upon interaction. Figures 1 and 2 elaborate both cases of the dark 1-soliton solutions (28) in two- and three-dimensional shapes by taking some suitable choices of the parameters. In figure 3, the graphical shapes of the singular 1-soliton solution (30) are shown in two and three dimensions at specific values of the parameters. The dark 1-soliton solution (33) is depicted in figure 4 in two- and three-dimensional shapes by taking suitable values of the free parameters.
Figure 1.
New window|Download| PPT slide Figure 1.Graph of case 2 for (28) at b2 = 1, δ = 1, κ = 0.2, λ = 0.1, b1 = 0.1, ν = 0.1, θ0 = 5, M = 0.2, ω = 0.1, b3 = 0.2.
Figure 2.
New window|Download| PPT slide Figure 2.Graph of case 2 for (30) at b2 = 1, δ = 1, κ = 0.2, λ = 0.1, b1 = 0.1, ν = 0.1, θ0 = 5, M = 0.2, ω = 0.1, b3 = 0.2.
Figure 3.
New window|Download| PPT slide Figure 3.Graph of case 3 for (33) at b2 = 1, δ = 1, κ = 0.2, λ = 0.1, b1 = 0.1, ν = 0.1, θ0 = 5, M = 0.2, ω = 0.1, b3 = 0.2.
Figure 4.
New window|Download| PPT slide Figure 4.Graph of case 3 for (35) at b2 = 2, δ = 0.1, κ = 0.1, λ = 0.01, b1 = 0.1, ν = 0.1, θ0 = 0.5, M = 0.1, ω = 0.1, b3 = 0.2.
5. Conclusions
In this work, the NNLSE with competing weakly nonlocal nonlinearity and parabolic law nonlinearity is studied using the modified simple equation method. It should be noted that all the obtained solutions in the current work are dark and singular 1-soliton solutions. This strong integration approach is very effective when other schemes fail to find soliton solutions. Thus, this methodology will be studied in future for various other situations in various types of NNLSEs.
WangGMirzazadehMYaoMZhouQ2016 Optical solitons under competing weakly nonlocal nonlinearity and cubic–quintic nonlinearities 10 807810 [Cited within: 2]
MirzazadehMEslamiMSavescuMBhrawyA HAlshaeryA AHilalE MBiswasA2015 Optical solitons in DWDM system with spatio-temporal dispersion 241550006 DOI:10.1142/S021886351550006X [Cited within: 3]
ZhouQLiuLZhangHMirzazadehMBhrawyA HZerradEMoshokoaSBiswasA2016 Dark and singular optical solitons with competing nonlocal nonlinearities 46 7986 DOI:10.5277/oa160107 [Cited within: 2]
YangCZhouQTrikiHMirzazadehMEkiciMLiuW JBiswasABelicM2019 Bright soliton interactions in a (2+1) -dimensional fourth-order variable-coefficient nonlinear Schrödinger equation for the Heisenberg ferromagnetic spin chain 95 983994 DOI:10.1007/s11071-018-4609-z [Cited within: 1]
RezazadehHSeadawyA REslamiMMirzazadehM2019 Generalized solitary wave solutions to the time fractional generalized Hirota–Satsuma coupled KdV via new definition for wave transformation 4 7784 DOI:10.1016/j.joes.2019.01.002
HosseiniKOsmanM SMirzazadehMRabieiF2020 Investigation of different wave structures to the generalized third-order nonlinear Schrödinger equation 206164259 DOI:10.1016/j.ijleo.2020.164259
LiuXTrikiHZhouQMirzazadehMLiuWBiswasABelicM2019 Generation and control of multiple solitons under the influence of parameters 95 143150 DOI:10.1007/s11071-018-4556-8
LiuSZhouQBiswasALiuW2019 Phase-shift controlling of three solitons in dispersion-decreasing fibers 98 395401 DOI:10.1007/s11071-019-05200-5
LiuWZhangYWazwazA MZhouQ2019 Analytic study on triple-S, triple-triangle structure interactions for solitons in inhomogeneous multi-mode fiber 361 325331 DOI:10.1016/j.amc.2019.05.046
GuanXLiuWZhouQBiswasA2020 Some lump solutions for a generalized (3+1)-dimensional Kadomtsev–Petviashvili equation 366124757 DOI:10.1016/j.amc.2019.124757
YanYLiuW2019 Stable transmission of solitons in the complex cubic–quintic Ginzburg–Landau equation with nonlinear gain and higher-order effects 98 171176 DOI:10.1016/j.aml.2019.06.008
AttiaR ALuDAkTKhaterM M2020 Optical wave solutions of the higher-order nonlinear Schrödinger equation with the non-Kerr nonlinear term via modified Khater method 342050044 DOI:10.1142/S021798492050044X
KhaterM MAttiaR AAbdel-AtyA HAbdouM AEleuchHLuD2020 Analytical and semi-analytical ample solutions of the higher-order nonlinear Schrödinger equation with the non-Kerr nonlinear term 16103000 DOI:10.1016/j.rinp.2020.103000
QianLAttiaR AQiuYLuDKhaterM M2019 The shock peakon wave solutions of the general Degasperis–Procesi equation 331950351 DOI:10.1142/S021797921950351X
RezazadehHKorkmazAKhaterM MEslamiMLuDAttiaR A2019 New exact traveling wave solutions of biological population model via the extended rational sinh-cosh method and the modified Khater method 331950338 DOI:10.1142/S021798491950338X
SulaimanT ABulutH2020 Optical solitons and modulation instability analysis of the (1+1)-dimensional coupled nonlinear Schrödinger equation 72025003 DOI:10.1088/1572-9494/ab617e
SulaimanT ABulutHYokusABaskonusH M2019 On the exact and numerical solutions to the coupled Boussinesq equation arising in ocean engineering 93 647656 DOI:10.1007/s12648-018-1322-1
YokusASulaimanT ABulutH2018 On the analytical and numerical solutions of the Benjamin–Bona–Mahony equation 50 31 DOI:10.1007/s11082-017-1303-1
YokusASulaimanT ABaskonusH MAtmacaS P2018 On the exact and numerical solutions to a nonlinear model arising in mathematical biology 22 01061 DOI:10.1051/itmconf/20182201061
KayaDGülbaharSYokuşAGülbaharM2018 Solutions of the fractional combined KdV-mKdV equation with collocation method using radial basis function and their geometrical obstructions 2018 77 DOI:10.1186/s13662-018-1531-0
AliK KRezazadehHTalarposhtiR ABekirA2020 New soliton solutions for resonant nonlinear Schrödinger's equation having full nonlinearity 34 2050032 DOI:10.1142/S0217979220500320
SeadawyA RAliK KNuruddeenR I2019 A variety of soliton solutions for the fractional Wazwaz–Benjamin–Bona–Mahony equations 12 22342241 DOI:10.1016/j.rinp.2019.02.064
AliK KNuruddeenR IHadhoudA R2018 New exact solitary wave solutions for the extended (3.1)-dimensional Jimbo–Miwa equations 9 1216 DOI:10.1016/j.rinp.2018.01.073
SouleymanouAAliK KRezazadehHEslamiMMirzazadehMKorkmazA2019 The propagation of waves in thin-film ferroelectric materials 93 27 DOI:10.1007/s12043-019-1774-7
MiahM MAliH SAkbarM ASeadawyA R2019 New applications of the two variable (G’/G, 1/G)-expansion method for closed form traveling wave solutions of integro-differential equations 4 132143 DOI:10.1016/j.joes.2019.03.001
MiahM MSeadawyA RAliH SAkbarM A2019 Further investigations to extract abundant new exact traveling wave solutions of some NLEEs 4 387394 DOI:10.1016/j.joes.2019.06.004
MiahM MAliH SAkbarM AWazwazA M2017 Some applications of the (G’/G, 1/G)-expansion method to find new exact solutions of NLEEs 132 252 DOI:10.1140/epjp/i2017-11571-0
HabibM AAliH SMiahM MAkbarM A2019 The generalized Kudryashov method for new closed form traveling wave solutions to some NLEEs 4 896 DOI:10.3934/math.2019.3.896
RezazadehHKorkmazAEslamiMMirhosseini-AlizaminiS M2019 A large family of optical solutions to Kundu–Eckhaus model by a new auxiliary equation method 51 84 DOI:10.1007/s11082-019-1801-4
RazaNAslamM RRezazadehH2019 Analytical study of resonant optical solitons with variable coefficients in Kerr and non-Kerr law media 51 59 DOI:10.1007/s11082-019-1773-4
KorkmazA2017 Exact solutions to (3 + 1) conformable time fractional Jimbo–Miwa, Zakharov–Kuznetsov and modified Zakharov–Kuznetsov equations 67 479 DOI:10.1088/0253-6102/67/5/479
KorkmazAHosseiniK2017 Exact solutions of a nonlinear conformable time-fractional parabolic equation with exponential nonlinearity using reliable methods 49 278 DOI:10.1007/s11082-017-1116-2 [Cited within: 1]
ZhengB2015 Exact solutions for fractional partial differential equations by projective Riccati equation method 77 99108 [Cited within: 1]
YongCBiaoL2004 New exact travelling wave solutions for generalized zakharov-kuzentsov equations using general projective riccati equation method 41 1 DOI:10.1088/0253-6102/41/1/1 [Cited within: 1]
HafezM GAlamM NAkbarM A2014 Exact traveling wave solutions to the Klein–Gordon equation using the novel (G’/G)-expansion method 4 177184 DOI:10.1016/j.rinp.2014.09.001 [Cited within: 1]
LuDSeadawyA RKhaterM M2018 Structure of solitary wave solutions of the nonlinear complex fractional generalized Zakharov dynamical system 2018 266 DOI:10.1186/s13662-018-1734-4
SeadawyA RLuDKhaterM M2017 New wave solutions for the fractional-order biological population model, time fractional burgers, Drinfel’d–Sokolov–Wilson and system of shallow water wave equations and their applications 26 508524 DOI:10.1080/17797179.2017.1374233 [Cited within: 1]
AkterJAkbarM A2015 Exact solutions to the Benney–Luke equation and the Phi-4 equations by using modified simple equation method 5 125130 DOI:10.1016/j.rinp.2015.01.008 [Cited within: 1]
Al-AmrM O2015 Exact solutions of the generalized (2+1)-dimensional nonlinear evolution equations via the modified simple equation method 69 390397 DOI:10.1016/j.camwa.2014.12.011 [Cited within: 1]
El-GanainiSAl-AmrM O2019 New abundant wave solutions of the conformable space-time fractional (4+1)-dimensional Fokas equation in water waves 78 20942106 DOI:10.1016/j.camwa.2019.03.050 [Cited within: 1]