1.National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China 2.Computational Physics Key Laboratory of Sichuan Province, Yibin University, Yibin 644007, China
Fund Project:Project supported by the Scientific Research Fund of Sichuan Provincial Education Department, China (Grant No. 15ZB293) and the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province, Yibin University, China (JSWL2014KF02).
Received Date:21 March 2019
Accepted Date:17 April 2019
Available Online:01 July 2019
Published Online:05 July 2019
Abstract:We analyze the structure and rheological properties of ring and linear polymers under shear byusing the non-equilibrium molecular dynamics simulation. The simulation results show that compared with the ring chains, the linear polymers do not present prominent stress over shoot phenomenon. Since the overshoot reflects the maximum flow-induced deformation of the polymer, this qualitative observation already implies that the ring experience less deformation than its linear precursor in simple shear flow. This is consistent with the recent experimental result. In order to further study the molecular mechanism of this phenomenon, the segmental structure and orientation angle distribution as a function of strain under the different Weissenberg numbers are given in this study. The weak overshoot of the stretching of the ring polymers proves that the weak shear thinning and peak strain are due to the weak deformation of the segment chain of the ring in the shear flow. The rheological properties of linear and ring system are extracted from the stress-strain curves, can be used further to analyze the data. The peak strain γmax as afunction of WiR follows a power-law with an exponent of 0.3 for linear polymer at WiR>1, however, for the ring system thepeak strain follows a power-law with an exponent of 0.1. The parameter ηmax/ηsteady is also the measure of the effective chain deformation at a steady state. The data show its progressive increase with WiR increasing, and follows a power-law with a scaling slop of 0.13 and 0.08 for linear and ring polymers, respectively. The peak stress σmax as a function of WiR is also extracted from stress-strain curve. The two investigated systems both obey the scaling law with an exponent of 0.5. The normalized steady-state shear viscosity obeys a shear thinning slop of –0.86 for the linear polymer, the ring polymer obeysa shear thinning slop of –0.4. According to the gyration tensor and orientation angle, the power-law relationship between stretching and orientation is also given in this work. Keywords:linear chain/ ring chain/ stress-strain/ non-equilibrium molecular dynamics simulation
为了研究线性链与它所对应的首尾相接的环状链体系所的流变特性, 本文构建了长度N = 400的粗粒化线性链和环状链分子体系, 体系中包含了100根链, 如图1所示. 为了比较方便, 在数据分析过程中将它们分别标记为linear和ring. 环状链结构在熔体中非链接或者非串联的. 根据Likhtman 和Larson[17]的工作, 知道分子链结构体系对应的缠结长度为Ne = 50, 并且计算出线性链和环状链对应的松弛时间分别为1.45 × 105τ和0.38 × 105τ. 初始结构建完之后, 体系分别在T = 1.0下松弛1 × 106τ. 两种体系的初始密度都为$0.85{\sigma ^{ - 3}}$. 当体系经历了充分的松弛之后, 再给体系施加剪切流场来计算其对应的流变特性. 图 1 线性链与其对应的环状链对应的结构 Figure1. The structure of linear and ring chains.
-->
3.1.线性链及其环状链熔体在不同流场强度下的应力及黏性响应
图2(a)和图2(c)示出了线性链与其同分子量的环状链体系对应在不同流场强度下的应力-应变曲线. 对于线性链, 随着应变的增加, 剪切应力演化在各个应变速率下都存在一个过冲应变点, 而且随着剪切速率的增加过冲应变也在不断地增加. 应力过冲和软化之后, 线性链熔体对应的应力响应会进入一个平台区, 也就是稳态. 但与其对应的环状链体系比较, 会发现当应变速率小于1 × 10–4τ–1时, 剪切应力没有出现明显的过冲现象, 应力屈服之后直接进入的是一个平台区. 当剪切速率大于1 × 10–4τ–1时, 才出现了微弱的过冲现象. 大应变速率下的应力响应与线性链的响应一致. 继续分析线性链和环状链最大应力的大小, 不难发现线性链最大应力比其环状链对应的最大应力大很多. 本文模拟结果与实验所观察到的结果也是一致的[8], 证明我们选取的模型及模拟过程的合理性. 同时, 这个差异性也引起了我们的关注, 但是实验上关于这种现象的分子机理很难检测到, 也没有给出明确的分子解释. 所以, 很有必要在分子层面研究线性链与其对应的环状链在不同剪切应变速率下的分子链段的拉伸和取向.黏性和剪切应力满足以下公式[18,19]: 图 2 (a), (b)线性链体系对应的应力随着应变及剪切黏性随着时间的演化过程;(c), (d)环状链体系对应的应力随着应变及剪切黏性随着时间的演化过程 Figure2. (a), (b) Stress-strain and nonlinear startup shear viscosity as function of strain and time for linear polymers, respectively; (c), (d) stress-strain and nonlinear startup shear viscosity as function of strain and time for ring polymers, respectively.
为了进一步探究不同剪切流场下, 环状链与其对应的线性链分子链段信息的变化, 将线性和环状分子按缠结长度Ne = 50分成小段来考察链段的分布和拉伸比($\lambda \;{\rm{ = }}\left\langle {{L_{{\rm{seg}}}}} \right\rangle /\left\langle {{L_0}} \right\rangle $, $\left\langle {{L_0}} \right\rangle $和$\left\langle {{L_{{\rm{seg}}}}} \right\rangle $分别对应的是开始剪切之前链段的平均末端距和不同应变下链段的平均末端距)及链段沿着流场方向取向角分布及平均值($\left\langle \theta \right\rangle $, 链段矢量与流场方向的平均夹角)的变化. 图5示出了不同$W{i_{\rm{R}}}$下链段的长度分布概率及链段平均拉伸比随着应变的变化过程. 在弱流场下, 线性链与其环状链对应的链段的分布基本上是高斯分布, 平均拉伸比保持在1附近. 但是当$W{i_{\rm{R}}}$增加到10以后, 会发现线性链的链段的平均拉伸比会明显增加, 而且到达最大值后会有一个明显的拉伸过冲现象, 暗含链段有一个明显的回弹. 相比于线性链, 环状链体系的链段拉伸比在强流场下没有出现明显的过冲现象, 这与目前看到的应力没有明显的过冲现象也是一致的, 从而可以推断环状链体系之所以没有明显的过冲现象是由于环状链自身弱的拉伸比及剪切过程中链段没有明显的回弹导致的. 最近Kremer等[1]的结论也证实了环状高分子链在小应变速率下构象不发生明显的拉伸, 从侧面也验证了我们的结论[6]. 不仅仅是环状高分子链分子存在这样的现象, 环状的DNA分子与其线性链比较的实验也发现了类似的结果. 图6给出了链段取向角的分布变化. 对于线性链和环状分子, 在低剪切速率下, 链段的取向都没有发生明显的变化, 而且$\theta $分布都很宽, 但是随着流场强度的增加, $\theta $的分布也明显变窄, 表明分子链段存在明显的取向. 当体系达到稳态之后, 线性链体系和环状分子体系$\theta $并没有减小. 从而可以推断: 线性链体系表现出明显的过冲主要是由于链段的拉伸回弹导致的. 环状链体系之所以没有表现出明显的过冲现象是由于其分子的链段到达稳态之后并没有出现明显的回弹. 图 5 不同$W{i_{\rm{R}}}$下线性与环状分子链段长度分布随着应变的演化 Figure5. Evolution of segmental length distribution of linear and ring polymers under the different $W{i_{\rm{R}}}$.
图 6 不同$W{i_{\rm{R}}}$下线性与环状分子链段沿着剪切方向角分布随着应变的演化 Figure6. Evolution of segmental angle distribution for linear and ring polymers under the different $W{i_{\rm{R}}}$.