1.Tianjin Key Laboratory of Modern Engineering Mechanics, Tianjin 300072, China 2.Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11272231, 11472186, 11572218).
Received Date:26 December 2018
Accepted Date:28 March 2019
Published Online:20 June 2019
Abstract:Electrochemical-mechanical coupling mechanism plays an important role in stress relaxation and cycle stability during charging and discharging of lithium ion batteries. The hollow core-shell structure has become a research hotspot in recent years due to the dual effects of its carbon layer and internal voids on volume expansion. However, the theory of diffusion induced stress has not been used to determine how the elastoplastic deformation of amorphous silicon affects the electrochemical performance of silicon anodes with more complex geometries. Based on the Cahn-Hilliard type of material diffusion and finite deformation, a fully coupled diffusion-deformation theory is developed to describe the electrochemical-mechanical coupling mechanism of silicon-polar particles. According to the interface reaction kinetics, the voltage response curve is obtained. The overall trend of the calculated results accords well with the experimental results, and the predicted stress response is also consistent with the experimental result, and thus verifying the effectiveness of the method. Taking the hollow carbon-coated silicon structure that has received much attention in recent years as an example, we study the electrochemical and mechanical behavior during lithiation of hollow carbon-coated silicon anodes and the capacity decay and stress evolution after charge and discharge cycles. The numerical simulation results show that the stress level of the hollow carbon-coated silicon electrode is significantly lower than that of the solid silicon electrode during the whole lithiation. With the lithiation, the stress difference becomes larger and the stress value at the end of lithiation is reduced by about 27%. It fully shows the dual effects of carbon layer and internal pores on stress relaxation and release. In addition, the concentration gradient in the solid silicon negative electrode is too large, which will result in greater stress. In contrast, the lithium ion concentration inside the hollow carbon-coated silicon particles during lithiation is significantly higher than that of the solid silicon particles, and tends to be evenly distributed, which conduces to alleviating the mechanical degradation of the electrode. At the same time, the hollow carbon coated silicon electrode reaches the fully lithiated state earlier, which fully shows the excellent electrochemical performance of the hollow core-shell structure. Finally, the numerical calculation shows that the capacity attenuation is quite consistent with the experimental measurements. Mitigation of stress levels under structural control delays the attenuation of the capacity of hollow carbon-coated silicon anodes. The excellent cycle stability can be attributed to the dual effect of carbon coating and internal pores on volume expansion and stress relief. Keywords:electrochemical-mechanical coupling/ hollow carbon coated silicon particles/ finite element numerical method/ cyclic stability
其中, $\mu _{{\rm{Li}}}^{{\rm{(electrode surf)}}}$表示电极颗粒边界处的化学势, 它取决于边界处的浓度和应力, 由方程(10)给定; 而${\mu _{{\rm{ext}}}}$表示外部施加的化学势, 通过控制${\mu _{{\rm{ext}}}}$以模拟嵌锂($\mu _{{\rm{Li}}}^{{\rm{(electrode surf)}}} < {\mu _{{\rm{ext}}}}$)和脱锂($ \mu _{{\rm{Li}}}^{{\rm{(electrode surf)}}} >$$ {\mu _{{\rm{ext}}}}$)过程, 数值模拟中设定单次充放电时间为3600 s. 图 2 中空碳包覆硅结构的建模 (a) Ashuri等[24]实验制备的中空碳包覆硅颗粒TEM图像; (b)中空核-壳结构有限元模型示意图; (c)中空核-壳结构有限元网格划分示意图 Figure2. Modeling of hollow carbon coated silicon structure: (a) TEM image of hollow carbon coated silicon particles reproduced by Ashuri et al.[24]; (b) finite element model of hollow core-shell structure; (c) schematic diagram of finite element meshing of hollow core-shell structure.
25.1.实心硅和中空碳包覆硅负极的浓度场和应力场分析
-->
5.1.实心硅和中空碳包覆硅负极的浓度场和应力场分析
本节主要研究实心硅电极和中空碳包覆硅电极锂化期间的应力演化及锂化状态. 对于中空碳包覆硅结构, 考虑空心硅材料内半径为a, 外半径为b, 碳层厚度为t, 计算中取a/b = 0.54, t/b = 0.1. 图3为实心硅和中空碳包覆硅电极在整个锂化-脱锂阶段应力随时间的演化规律, 可以看到, 在整个锂化-脱锂期间中空碳包覆硅电极应力水平明显低于实心硅电极, 且随着锂化的进行, 应力差值越来越大, 表明应力缓解效应越来越显著, 锂化结束时应力值降低约27%, 充分显示出碳层和内部孔隙对于应力缓解和释放的双重效应. 图 3 实心硅电极和中空碳包覆硅电极在整个锂化-脱锂阶段应力随时间的演化 Figure3. Evolution of stress over time in lithiation-delithiation stage with solid silicon electrode and hollow carbon-coated silicon electrode.
图4为不同时刻实心硅电极和中空碳包覆硅电极内的锂离子浓度分布云图. 从图4可知, 对于实心硅电极, 嵌入的锂离子浓度呈“带”状分布, 高浓度区域位于颗粒表面, 随着外部区域的硅不断锂化至饱和, 内层材料渐渐锂化并逐渐向心部推进, 表明外部区域在内部区域之前完全锂化. 而对于中空碳包覆硅颗粒, 锂化期间内部锂离子浓度水平整体明显高于实心硅颗粒, 且更趋向于均匀分布, 这有助于缓解电极降解. 同时, 中空碳包覆硅电极更早地达到完全锂化状态, 表明中空核-壳结构优异的电化学性能. 由此看来, 由于中空碳包覆硅电极内部在锂化过程中, 更有利于锂离子浓度的均匀分布, 从而从另一方面缓解应力, 即均匀分布的锂离子浓度有利于降低电极内部的整体应力水平. 图 4t = 1200, 1500, 1800 s时实心硅电极和中空碳包覆硅电极内锂离子浓度分布云图 Figure4. Cloud distribution of lithium ion concentration in solid silicon electrode and hollow carbon coated silicon electrode at t = 1200, 1500, 1800 s.
为了进一步研究电化学过程中的应力响应, 图5给出了实心硅和中空碳包覆硅电极在锂化后期, 锂离子浓度(a)、应力(b)、化学势(c)沿径向的分布图. 从图5(a)可看出, 靠近外表面处两者锂离子浓度差异偏低, 而电极内部两者浓度差异较大, 最大值达0.06. 两电极内部锂离子浓度最小和最大差值分别为0.04和0.1, 较大的浓度差异将导致较高的浓度梯度, 从而在电极内产生较大的应力. 其对应的沿径向方向应力值如图5(b)所示, 可以看出, 中空碳包覆硅电极相较于实心硅电极应力水平明显降低. 由(10)式可知化学势可分解为由锂离子浓度主导的化学势和由应力支配的应力化学势, 从图5(b)和图5(c)可看出, 应力水平地缓解通过改变应力化学势提高了与锂离子浓度近似线性相关的化学势, 且两电极内化学势差值从表面到内部逐渐增加, 由此解释了实心硅电极和中空碳包覆硅电极内部锂离子浓度水平及分布的不同. 图 5 实心硅和中空碳包覆硅电极在锂化后期沿径向方向的(a)锂离子浓度、(b)应力和(c)化学势 Figure5. Distribution of (a) the lithium ion concentration, (b) stress, and (c) chemical potential of solid silicon and hollow carbon coated silicon electrode in the radial direction at the late stage of lithiation.