Fund Project:Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304201), the National Natural Science Foundation of China (Grant Nos.11734008, 11374101, 91536112, 116214040), the Excellent Leaders of Disciplines in Science of Shanghai, China (Grant No. 17XD1401500), and the Basic Research Program of Shanghai, China (Grant No. 17JC1400500).
Received Date:28 December 2018
Accepted Date:04 February 2019
Available Online:19 February 2019
Published Online:20 February 2019
Abstract:The evolution of non-equilibrium dynamic for many-body systems is one of the most challenging problems in physics. Ultra-cold quantum atomic Fermi gas provide an test-bed for studying many-body non-equilibrium dynamics due to its high freedom of controllability, which can be used to simulate and understand the dynamics of the early universe after the Big Bang, quark-gluon produced in heavy ion collisions and nuclear physics. Generally, the evolution of many-body systems is very complex, and usually needs to be studied by symmetry. Feshbach resonance can be used to prepare scale invariant atomic Fermi gases: non-interacting and unitary Fermi gases. When far away from equilibrium state, universal exponents and functions can be used to characterize the dynamics of the system, which can be identified by scaling the temporal and spatial evolution of the system. In this review, the recent developments in the expansion dynamics of strongly interacting ultracold Fermi gases are introduced, including the anisotropic expansion of atomic gases, scaling dynamics and Efimovian expansion dynamics. Keywords:strongly-interacting ultracold Fermi gas/ Feshbach resonance/ anisotropic expansions/ scale invariance/ Efimovian expansion dynamics
全文HTML
--> --> --> -->
2.1.强相互作用超冷费米气体的各向异性展开
类似超冷费米气体存在高温超导特性, 超流体也是超冷费米气体具有的一大特性. 在超冷费米气体接近零温的情况下, 流体中存在的量子黏度越来越小, 费米流体越来越接近超流体, 通过对超流体所具有的流体力学性质[2,22]、量子化涡旋[8]、原子成对效应[23,24]等进行深入探索研究, 可以进一步提高人们对超流体性质的深入认知. 2002年, 美国杜克大学的 O'Hara等[2]利用全光俘获的方法获取了强相互作用的6Li超冷费米气体, 并且首次观测了强相互作用费米气体的各向异性膨胀过程. 在实验中, 他们使用外加磁场来进行原子的Feshbach共振, 使三维“雪茄型”费米气体处于强相互作用区域, 当快速关掉光阱使原子气体自由地在三维空间飞行膨胀时, 发现其膨胀过程展现出图1(a)中所示的情形, 原子气体的纵横比很快发生颠倒, 体现为各向异性的动力学膨胀, 这是由于原子间强烈的散射碰撞导致的. 对于稀释的原子气体而言, 原子间间距相对较大, 原子间短程相互作用长度一般会远小于原子间距, 利用Feshbach共振技术可以将超冷原子将s波散射长度调至远大于原子间距, 此时原子间的散射碰撞将占据主导作用, 费米原子气体也因此展现出各向异性的“椭圆流动”行为[2]. 而对于无相互作用的费米气体, 由于原子气体间没有散射碰撞, 在足够长的时间后原子的动量分布将趋向于各向同性, 最终在空间中原子气体将形成趋向于球形. 因此这种各向异性膨胀过程不会发生在无相互作用的费米气体中, 无相互作用原子气体的纵横比不会超过1, 如图1(c)所示. 图 1 (a)强相互作用超冷费米气体的各向异性膨胀吸收成像图; (b)原子团不同方向的非平衡动力学膨胀行为; (c)不同相互作用下原子团的纵横比大小演化图[2] Figure1. (a)The absorption image of the anisotropic expansion dynamics in strongly interacting Fermi gas; (b) the non-equilibrium dynamical expansion behavior in different directions; (c) the evolution for the aspect ratio of the atomic cloud under different interaction regime[2].
实验结果如图6所示, 在时间和空间坐标下超冷费米气体无论是在无相互作用下(图6(c))下还是处于幺正区域(图6(a))均呈现出与Efimov效应类似的时间空间离散结构, 而将其转化到双对数坐标下(图6(b)和图6(d))原子团大小清晰地展现出正弦振荡的行为, 表征出原子气体膨胀过程中所显现的双对数依赖关系. 图 6 超级Efimovian 膨胀动力学实验结果 (a)和(c)分别表示幺正费米气体和无相互作用费米气体的超级Efimov 动力学效应; (b)和(d)表示在时间双对数标度下相应原子团大小的振荡行为[42] Figure6. The experimental observation of dynamical super Efimovian expansion. (a), (b) and (c), (d) are the mean axial cloud size versus the expansion time and the dimensionless axial mean square cloud size versus the dimensionless time in the unitary Fermi gas and ideal Fermi gas, respectively[42].
值得一提的是, 超级Efimovian动力学膨胀过程中不仅原子团大小呈现双对数依赖关系, 其能量本征值也符合双对数标量关系. 谐振子阱中的量子气体的能量可以认为势能和内能之和, 内能包括原子气体的动能和相互作用能. 如图7所示, 在无相互作用费米气体中, 由于相互作用能为零, 系统可以简单地认为只存在势能和动能, 随着超级Efimovian动力学膨胀行为的进行, 原子气体的内能和势能同步减少, 且内能和势能存在很大程度的周期式交换过程, 其能量交换的周期刚好和超级Efimovian动力学效应的振荡周期相同. 超级Efimovian动力学过程中内能和势能均符合双对数指数标度关系, 且振荡周期相同, 相位相差$ {\text{π}} $. 图 7 超级Efimovian 膨胀过程中的内能和势能在时间(a)及其双对数标度(b)下的变化示意图[42] Figure7. The axial potential (internal) energy ratio versus expansion time (a) and the axial energy scaling versus dimensionless time (b) for the super Efimovian expansion[42].