1.CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China 2.Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Fund Project:Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304100) and the National Natural Science Foundation of China (Grant Nos. 61327901, 11774331, 11774335, 11504362, 11821404, 11654002).
Received Date:16 December 2018
Accepted Date:08 January 2019
Available Online:01 February 2019
Published Online:05 February 2019
Abstract:The faithful storage and coherent manipulation of single photon state in a matter-system are crucial for linear-optical quantum computation, long-distance quantum communication, and quantum networking.To reach useful data rate in a large-scale quantum network, highly multimode quantum memories are required to build a multiplexed quantum repeater.Rare-earth-ion doped crystal (REIC) is very promising material as a candidate for multimode quantum storage due to the wide inhomogeneous broadening and long optical coherence time.In this article, we review the recent advances in multimode quantum memories based on REICs.First, we briefly introduce the properties of REIC and the atomic frequency comb protocol based on REIC.Next, we review the achievements of multimode quantum memories based on REIC in recent years, including frequency, temporal and spatial multimode storage.Afterwards, we review our experimental work on multiplexed storage based on a multiple degree-of-freedom quantum memory.Finally, we introduce the quantum mode converter and real-time arbitrary manipulations based on the multiple degree-of-freedom quantum memory. The combination of storage and real-time manipulation in a device should enable the construction of a versatility quantum repeater.This review highlights that multimode quantum memories based on REIC can be found to possess some practical applications in developing the optical quantum information processing in the near future. Keywords:quantum memory/ multimode/ quantum mode converter/ quantum network
光子的空间自由度包括路径和空间分布等. 光子的轨道角动量(orbital-angular-momentum, OAM)是光子空间性质的波前横向分布, 理论上可以达到无穷维[32]. 携带OAM的光子的波前“扭曲”可以由勒盖尔-高斯模式(Laguerre-Gaussian, LGpl)来描述[33], 这里$ p $代表径向量子数, $ l $代表角向量子数. 如果考虑$ p = 0 $, 用LG模式来编码光子, 只需要考虑角向量子数$ l $, 每个光子携带的轨道角动量为$ l \hbar $. 轨道角动量的自由度属于空间自由度, $ l $越大, 维度越高, 同时光斑尺寸越大. 掺杂晶体的尺度可达几十毫米, 天然地适应存储轨道角动量, 支持上万个轨道角动量的模式[13]. 本团队所利用的实验光源是由非线性晶体PPKTP (periodically poled potassium titanyl phosphate)产生的下转换参量光, 窄带宽下转换纠缠光源的符合计数约为500个/s[13]. 存储晶体是一块厚度为3 mm、掺杂浓度为5 ppm的Nd:YVO. 首先实验测得三维纠缠的存储保真度达到0.991 ± 0.003. 用Bell不等式来检验存储之后的三维纠缠态的纠缠特性, 测量结果为S = 2.152 ± 0.033. 测量结果$ S $大于2, 违背了局域实在论的预言极限[34], 证明了存储器完美地保持了轨道角动量自由度的三维纠缠特性. 为了探索这种固态量子存储器对于光子的轨道角动量的存储容量, 使用了如图2(a)所示的简化装置, 采用每个脉冲包含0.5个光子的弱相干光作为输入. 图2(b)是三维空间的量子过程层析重构的密度矩阵的实部[35], 存储过程的保真度为0.970 ± 0.001. 对于更高维度的存储性能的分析, 量子过程层析不再是一个高效率的分析手段, 可以通过叠加态 $ \mid \varPsi_{+}(l) \rangle = (\mid- {l}\rangle + \mid {l} \rangle)/\sqrt{2} $的可见度来衡量高维空间的量子存储的性质[18]. 图2(c)的红色点是存储器的输出态可见度与维度$ l $的关系, 当$ l = 25 $时, 存储的可见度为0.952 ± 0.008, 证明了存储器可以存储高达51个维度的OAM量子态. 这里$ l $越大, 存储效率会由于信号光斑变大但泵浦光斑未能完全覆盖信号光斑而下降, 如果使用空间分布均匀的大的泵浦光斑(例如超高斯分布的泵浦光), 那么存储器可以对更高维度的OAM量子态实现高效的量子存储. 图 2 存储器的模式容量分析 (a) 研究多模式存储容量的实验装置; (b) 三维空间的OAM态通过量子过程层析重构密度矩阵$\chi_{2}$的实部; (c) 高维叠加态$\mid\!\!\varPsi_{+}(l)\rangle$的存储结果 [13] Figure2. The exploration of the multimode capacity in the spatial domain of the quantum memory: (a) The setup is used for exploration of the multimode capacity of the memory; (b) graphical representation of the real part of the reconstructed process matrix $\chi_{2}$ in three dimensions; (c) the memory performance for quantum superposition states $\mid\!\!\varPsi_{+}(l)\rangle$[13].
23.4.多个自由度的同时复用 -->
3.4.多个自由度的同时复用
同一个自由度的模式数复用都是以相加的形式增长, 但是不同自由度的模式同时复用则是按照乘积的形式增加. 比如时间自由度可以存储$ M $个模式, 频率自由度可以存储$ N $个模式、空间自由度可以存储$ P $个模式, 那么可以同时实现$ M\times N \times P $个模式[12,36,37]. 2018年, Yang等[14]首次报道了基于时间、频率和空间三个自由度的多模式复用量子存储. 0.05%掺杂的3 mm厚度的Pr:YSO作为存储晶体, 被放置于3.2 K的低温腔中. 采用的存储方案是AFC-自旋波存储. 利用掺杂晶体中Pr的非均匀展宽, 在存储晶体的下能级上制作了2个间隔为80 MHz的AFC作为两个频段的频率多模式复用. 如图3(a)所示, 红线为存储晶体中的AFC结构, AFC被制作在1/2g上, 其中$ {\rm 1/2g}\rightarrow $3/2e是对应输入光子的频率, $ {\rm 3/2g}\rightarrow {\rm 3/2e}$ 是对应输入控制光的频率; 黑线对应的是滤波晶体能级对应的跃迁吸收, $ \rm 1/2g \rightarrow 3/2e $是信号光子透过带, 允许被存储后的信号光子透过. 这两个AFC的参数都是带宽为2 MHz, 间距为200 kHz, 对应的AFC存储时间为5 μs. 对于空间模式的复用, 采用了图3(b)所示的3个不同路径加载不同的OAM 态作为三个独立空间模式的输入, 其中通过$ {\rm s}_{1} $的光子被空间光调制器(spatial-light modulator, SLM)加载了$ \mid\!\! L\rangle $态, 通过$ {\rm s}_{2} $的光子被一个螺旋相位片(spiral phase plate, SPP)加载了$ \mid\!\!R\rangle $态, $ {\rm s}_{3} $是一个高斯模式$ \mid \!\!G\rangle. $ 这里的$ \mid \!\!L\rangle $, $ \mid\!\! G\rangle $和$ \mid\!\! R\rangle $对应了LG模式中的 $ \mid\!\! LG^{l=-1}_{p=0} \rangle $, $ \mid \!\!L G^{l=0}_{p=0} \rangle $和$ \mid \!\!LG ^{l=1}_{p=0} \rangle $态. $ {\rm s}_{1} $,$ {\rm s}_{2} $和${\rm s}_{3} $通过两个薄膜分束器(pellicle beam splitters, BS)合束进入存储器. 最终实现了2个时间模式、2个频率模式和3个空间模式总共12个模式的存储, 如图3(c)所示. 图 3 单光子水平的多自由度复用的自旋波存储 (a) 在存储晶体的非均匀展宽上制作的两个间距为80 MHz的AFC (红色)和滤波晶体的吸收线(黑色); (b) 3个独立的空间模式的输入; (c) 时间、频率和空间自由度同时复用的自旋波存储 [14] Figure3. Multiplexed storage in multiple-degree-of-freedom at single photon level: (a) The double AFC structure (red) in the memory crystal and the double filter structure (black) in the filter crystal; (b) three independent spatial modes carrying different OAM states are employed for spatial multiplexing; (c) a demonstration of temporal, spectral and spatial multiplexed storage for single-photon level input [14].