删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

二维非厄米系统奇异点及费米点的Nielson-Nanomiya定理

本站小编 Free考研考试/2021-12-27

和人一样,自然的规律也喜欢“成双成对”。在格点规范场论中,Nielson-Nanomiya定理(或称Fermion doubling theorem, 费米子重叠定理)就是保证不同手性的费米子总是成双成对出现的一个重要概念,具体一点来说,就是在一个局域的,厄米的,以及平移不变的格点规范场论中,不同手性的费米子总是成对出现的。
  过去的十多年,Nielson-Nanomiya定理在拓扑能带理论的发展过程中发挥了非常重要的作用,它保证布里渊区中拓扑荷总是成对出现的。比如对于一般的拓扑半金属,能带简并点总是成对出现;与此对应,每个能带简并点都可以定义一个拓扑荷,例如在外尔拓扑半金属中,拓扑荷可以定义成围绕外尔点的陈数(Chern number)。如图1所示,Nielson-Nanomiya定理保证了这些拓扑荷在整个布里渊区中求和一定等于零。

图1: Nielson-Nanomiya定理中拓扑荷在布理渊区的分布示意图以及求和,红色和蓝色代表拓扑荷相反。
  有趣的是,对拓扑材料来说,Nielson-Nanomiya定理可以在材料的表面被破坏, 这个破坏恰好反应了材料的拓扑结构。比如在时间反演不变的拓扑绝缘体的一个表面上,狄拉克点可以单独出现,出现这样的表面态和体态的能带拓扑是一一对应的,这就是拓扑能带理论中著名的体边对应。
  Nielson-Nanomiya定理在非厄米拓扑系统中还成立吗?近年来,得益于人造材料和光子晶体的实验发展,非厄米系统受到了越来越多的关注,这个问题也很自然地成为非厄米系统的一个基本物理问题。非厄米系统中有一类被称为奇异点的特殊简并点,过去的研究已经表明在非厄米系统中依然可以定义奇异点的拓扑荷。但值得注意的是,过去针对非厄米系统拓扑荷的推广公式,并不能推导出有关奇异点的Nielson-Nanomiya定理。
  最近,中国科学院物理研究所/北京凝聚态物理国家研究中心凝聚态理论与材料计算重点实验室T06研究组胡江平研究员指导的博士生杨哲森(现卡弗里理论科学研究所博士后),与德国马普所的Schnyder研究员以及卡弗里理论科学研究所的邱靖凯研究员合作,借助于数学中关于多项式判别式的概念,得到多能带非厄米系统奇异点的普遍定义,并且证明了奇异点满足Nielson-Nanomiya定理,即,奇异点总是成对出现的,并且进一步指出过去研究的拓扑荷并非奇异点的性质,而是有关费米点的性质,澄清了费米点和奇异点之间的差别(图2)。

图2: 两能带系统中费米点与奇异点的差别示意图;红、蓝曲面代表两个不同的能带;黄、绿两点代表成对的奇异点,中间黑线代表费米弧;而红、蓝两点代表成对的费米点。
  文章还进一步探讨了Nielson-Nanomiya定理在三维材料表面被破坏的情况,并澄清了诸多关于奇异点的特殊性质,为研究非厄米系统中有关奇异点的物理奠定了理论基础。相关研究成果发表于Phys. Rev. Lett. 126, 086401 (2021),并被选成期刊编辑推荐的文章。
  该工作受到科技部重点研发计划(2016YFA0302400, 2017YFA0303100)、国家自然科学基金委员会(11674370, 11888101)和中国科学院(XXH13506-202, XDB33000000, XDB28000000)的资助。
论文链接
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.086401
延伸阅读:
http://www.iop.cas.cn/xwzx/kydt/202012/t20201201_5804194.html
http://www.iop.cas.cn/xwzx/kydt/202011/t20201117_5750186.html
http://www.iop.cas.cn/xwzx/kydt/202005/t20200511_5577472.html

PRL 126, 086401 (2021) Editors' Suggestion.pdf
相关话题/系统 材料 金属 物理 中国科学院

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于双曲超材料实现多维调控的图像显示和分束器
    与自然界中已有的传统材料相比,超材料(Metamaterials)是一种可人工设计、赋予奇异功能的材料,它能打破某些表观自然规律的限制,实现如负折射、隐身、超衍射等新奇的物理现象或功能。超材料最早应用于微波波段,然而对于高频波段,特别是如何利用超材料实现高效、宽频段、多维度的光场调控,依旧面临挑战。 ...
    本站小编 Free考研考试 2021-12-27
  • 高导电电极材料新进展:导电无机正极材料助力高能量密度有机电池
    人类社会高速发展对能源储能技术不断提出更高要求,锂离子电池作为一类优异的储能器件尽管这些年来取得巨大进步,但是面向未来电动交通工具全面电动化和大规模储能需求仍然面临巨大挑战,其中如何开发高能量密度下一代锂电池成为了目前全世界范围关注的研究热点。  中国科学院物理研究所/北京凝聚态物理国家研究中心清洁 ...
    本站小编 Free考研考试 2021-12-27
  • 反铁磁金属氮化铬超薄膜的电子态相变研究
    超薄导电材料在透明显示、柔性电子皮肤、可穿戴光伏器件等方面具有广泛的应用前景,是应用材料领域争相角逐的前沿领域。现代微电子器件不仅要求这些超薄材料具有优异的导电性和透光性,还要求它们能够具有更为丰富的物理特性,例如磁性、热电性、延展性和抗腐蚀性等,为设计下一代移动智能多功能器件提供备选材料。过渡金属 ...
    本站小编 Free考研考试 2021-12-27
  • 发现二维金属中奇异的等离激元
    光照射在固体材料上会使其中的电子形成两类激发:一种是电子-空穴的对激发,称为激子;另一种是电子的集体振荡,称为等离激元。等离激元有很多奇特的应用,例如等离激元通过与光耦合形成图1所示的极化激元 (Surface plasmon polariton, SPP),在电路中进行能量和信号的传输。理想情况下 ...
    本站小编 Free考研考试 2021-12-27
  • 合金新物态——金属冰川玻璃的发现
    冰川玻璃态作为一种新型非晶亚稳态,它的提法最早出现于1996年。当年,美国加州大学洛杉矶分校的Kivelson研究组发现,如果在一种分子液体——亚磷酸三苯酯(TPP)——的过冷液体区间内的特定温度下进行保温,TPP会转变成一种能量介于非晶态和晶态之间的新物态,即冰川玻璃态。这种转变被称为冰川化过程, ...
    本站小编 Free考研考试 2021-12-27
  • 实空间新型拓扑磁激发在磁性二维材料以及人工反铁磁薄膜中的发现与调控
    兼具温度、电流、磁场等多物理场协同调控的高分辨洛伦兹透射电镜在实空间探索纳米尺度新型磁畴结构,原位揭示与磁相关的新奇物理现象微观机制以及自旋原理性器件应用方面发挥着越来越重要的作用。中国科学院物理研究所/北京凝聚态物理国家研究中心磁学国家重点实验室M07组张颖研究团队在沈保根院士、磁学实验室以及物理 ...
    本站小编 Free考研考试 2021-12-27
  • 在磁性外尔半金属中首次提出“自旋轨道极化子”概念
    磁性量子材料的缺陷工程及其局域量子态自旋的调控,有望构筑未来实用化的自旋量子器件,是目前凝聚态物理研究的热点领域之一。近几年,基于过渡金属的笼目晶格(kagome lattice)化合物是揭示和探索包括几何阻挫、关联效应和磁性以及量子电子态的拓扑行为等在内的丰富的物理学性质的一个新颖材料平台。在这些 ...
    本站小编 Free考研考试 2021-12-27
  • 数据驱动具有负泊松比二维材料及具有量子反常霍尔效应二维材料异质结的高通量计算取得重要进展
    随着科技的发展,传统电子元器件在不断微型化过程中面临着诸多挑战。寻找新材料、新结构和新原理器件是推动信息化器件进一步发展的关键。近年来,二维材料由于仅有单个或几个原子层厚度,量子效应凸显,呈现出许多区别于传统三维材料的新奇物性和卓越性能,有望成为新原理型光、电、磁等器件的核心材料。因此,探索具有优异 ...
    本站小编 Free考研考试 2021-12-27
  • 高压诱发的量子自旋液体材料的Mott相变和超导
    高压、低温和强磁场等极端条件在探索新材料揭示新物理现象方面发挥着越来越重要的作用。研究材料在这些极端条件下的构效关系,能揭示许多奇异且具有潜在应用价值的物理现象。中国科学院物理研究所/北京凝聚态物理国家研究中心极端条件物理重点实验室靳常青团队长期开展新兴功能材料在综合极端条件下的构效关系研究,自主发 ...
    本站小编 Free考研考试 2021-12-27
  • 二维精雕,游刃有余:一种二维材料图案化的直写加工技术
    二维材料具有原子级厚度和非常高的比表面积,并且由于所有原子处于表面导致其表面对表面吸附和外界环境十分敏感。二维半导体材料在电子学与光电子学器件领域具有广阔的应用前景,有望取代硅成为下一代小型化电子器件的核心材料。为了实现此类应用,首先需要对材料进行剪裁。通过常规的微纳加工技术,包括光刻和反应离子干法 ...
    本站小编 Free考研考试 2021-12-27