磁性量子材料的缺陷工程及其局域量子态自旋的调控,有望构筑未来实用化的自旋量子器件,是目前凝聚态物理研究的热点领域之一。近几年,基于过渡金属的笼目晶格(kagome lattice)化合物是揭示和探索包括几何阻挫、关联效应和磁性以及量子电子态的拓扑行为等在内的丰富的物理学性质的一个新颖材料平台。在这些近层状堆叠的晶体材料中,过渡金属元素原子呈三角形和六边形在平面内交替排列,形成了独特的拓扑结构,例如具有狄拉克锥的电子能带结构特征和强自旋轨道耦合的平带特征等。并且,这些材料表现出铁磁、反铁磁以及顺磁等丰富的磁性基态。因此,它们成为人们广泛研究的对象。研究这类材料磁性以及拓扑特性的一个有效方案是在原子尺度探究其空间局域激发态,但至今未见报道。
Co3Sn2S2作为首个理论预言与实验证实的具有内禀磁性的外尔费米子拓扑体系,展现出了一系列独特的拓扑物性。表面依赖的拓扑费米弧和局域无序诱导的内禀反常霍尔电导率升高,使其成为研究缺陷激发及其拓扑特性相关性的理想平台。扫描隧道显微镜/谱与自旋极化针尖结合对于探索原子空位和原子上的缺陷激发是一个非常有力的工具。中国科学院物理研究所/北京凝聚态物理国家研究中心高鸿钧院士研究组在这两个技术及其前沿基础研究方面具有长期而雄厚的积累,取得了一批具有国际顶尖水平的研究结果。
最近,高鸿钧院士课题组的博士研究生邢宇庆、陈辉副研究员和黄立副研究员等人与M05组刘恩克研究员指导的博士生申建雷及美国波士顿学院的汪自强教授密切合作,通过极低温-强磁场-自旋极化扫描隧道显微镜/谱和低温-原子力显微镜的联合研究,研究了磁性外尔费米子系统Co3Sn2S2中的单原子缺陷附近的激发态。他们首先利用非接触的原子力显微镜图像及功函数测量,确定了解理产生的两种表面中的S原子终止面。进一步的自旋极化实验发现,在非磁性的S表面上围绕单原子S空位周围会形成空间局域的磁性的极化子。这些极化子表现为具有三重旋转对称性空间分布的束缚态激发的形式。此外,在垂直样品表面方向施加高达 ± 6 T的外部磁场的实验显示,无论磁场方向朝上还是朝下,局部磁极化子的结合能都随磁场强度的增加而线性增加,这表明轨道磁化作用对局域化磁矩(~1.35μB)具有主导作用。基于这一轨道磁矩的主导作用及在S空位明显的局域磁弹效应,他们发现了一种新的激发态,即局域化的自旋轨道极化子(Spin-orbital polaron, SOP)。Co3Sn2S2显著的局域化轨道磁化与拓扑相关的贝利曲率和拓扑磁体磁电效应的循环电流有关。此外,非磁性原子层上的SOP会对系统的局域磁性有显著的增强,同时也增强了时间反演对称性破缺导致的奇异拓扑物性。
与稀磁半导体中的磁极化子类比,该“自旋轨道极化子”有望在非磁性关联拓扑材料中引入内禀磁矩,从而形成“稀磁拓扑半金属”这一新的物质形态。此外,该工作也预示着可以在新型的量子拓扑材料中实现“缺陷量子工程”,即通过改变材料制备参数与原子操纵技术等对缺陷结构的尺寸、浓度与空间排布等进行精准控制,形成缺陷有序阵列等原子级可控结构,实现磁性量子材料的磁性与拓扑性质的精确调控,最终在量子器件中实现功能量子拓扑态的原子级定向构建和有序编织。因此,自旋轨道极化子发现为磁性外尔体系中磁序与拓扑性质的调控开辟了新的路径,在新一代复杂功能量子器件的开发方面具有极大的应用前景。
邢宇庆、申建雷、陈辉和黄立为论文的共同第一作者,刘恩克、汪自强与高鸿钧为共同通讯作者。刘恩克研究员与申建雷提供了高质量的Co3Sn2S2单晶样品,汪自强教授负责理论工作,高于翔、张余洋和季威等给予了理论计算上的支持。该工作得到了国家自然科学基金(61888102,11974422,11974394)、国家重点研发计划(2016YFA0202300,2017YFA0206303, 2018YFA0305800, 2019YFA0308500,2019YFA0704900)、中科院(XDB28000000,112111KYSB20160061)等的支持。相关研究成果以“Localized spin-orbit polaron in magnetic Weyl semimetal Co3Sn2S2”为题,于2020年11月5日在线发表在 Nature Communications 11, 5613 (2020) 上。
论文下载链接:https://www.nature.com/articles/s41467-020-19440-2
图一 Co3Sn2S2的两种解理表面以及S原子终止面的确定
图二 S表面单原子缺陷处的空间局域化激发态及空间分布
图三 S表面单原子缺陷处的空间局域化激发态的自旋极化表征
图四 单原子缺陷处的空间局域化激发态的反常塞曼效应与自旋轨道极化子
Nature Commun. 11, 5613 (2020).pdf
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
在磁性外尔半金属中首次提出“自旋轨道极化子”概念
本站小编 Free考研考试/2021-12-27
相关话题/材料 空间 结构 实验 工作
数据驱动具有负泊松比二维材料及具有量子反常霍尔效应二维材料异质结的高通量计算取得重要进展
随着科技的发展,传统电子元器件在不断微型化过程中面临着诸多挑战。寻找新材料、新结构和新原理器件是推动信息化器件进一步发展的关键。近年来,二维材料由于仅有单个或几个原子层厚度,量子效应凸显,呈现出许多区别于传统三维材料的新奇物性和卓越性能,有望成为新原理型光、电、磁等器件的核心材料。因此,探索具有优异 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27实验可控合成有序的准一维硼烯链混合相
单元素二维材料,由于具有重要的物理性质以及在纳米电子器件中有较大的应用潜力而受到关注。硼烯(borophene)是指由硼元素构成的二维平面结构,理论上认为有着不输于石墨烯的优良物理特性如金属性、高机械柔性、高导热性等,并且有可能具有狄拉克电子、超导等量子特性。由于硼原子相对于碳原子缺少一个价电子,使 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27高压诱发的量子自旋液体材料的Mott相变和超导
高压、低温和强磁场等极端条件在探索新材料揭示新物理现象方面发挥着越来越重要的作用。研究材料在这些极端条件下的构效关系,能揭示许多奇异且具有潜在应用价值的物理现象。中国科学院物理研究所/北京凝聚态物理国家研究中心极端条件物理重点实验室靳常青团队长期开展新兴功能材料在综合极端条件下的构效关系研究,自主发 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27二维精雕,游刃有余:一种二维材料图案化的直写加工技术
二维材料具有原子级厚度和非常高的比表面积,并且由于所有原子处于表面导致其表面对表面吸附和外界环境十分敏感。二维半导体材料在电子学与光电子学器件领域具有广阔的应用前景,有望取代硅成为下一代小型化电子器件的核心材料。为了实现此类应用,首先需要对材料进行剪裁。通过常规的微纳加工技术,包括光刻和反应离子干法 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27二维材料复合光纤实现超高非线性效应
随着光通信技术的发展,光纤已经成为现代信息社会的重要支撑。非线性光纤作为一种特殊用途光纤,不仅在新型光纤通讯技术中有重要应用和发展前景,而且在光波长转换、超快光纤激光和超连续激光等光物理基础和器件研究等领域具有很大应用潜力。然而,传统石英光纤仅表现出非常微弱的奇数阶非线性效应,严重限制了在非线性光学 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27中子衍射研究磁结构调控的晶格畸变和负热膨胀以及压力增强的磁热与压热效应
现代精密制造业(如:集成电路板、光栅、高精度光学透镜等)迫切需要具有特定精确膨胀系数甚至零膨胀的材料,因此作为热补偿的负热膨胀(NTE)材料受到广泛关注。一直以来,调整材料组分被认为是调节其NTE行为最有效的方式,同时也可以利用尺寸效应调控NTE行为。但无论是基于声子诱导机制(如:张力效应)或者是电 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27高电压钴酸锂锂离子电池正极材料研究进展
钴酸锂(LiCoO2)是最早商业化的锂离子电池正极材料。由于其具有很高的材料密度和电极压实密度,使用钴酸锂正极的锂离子电池具有最高的体积能量密度,因此钴酸锂是消费电子用锂离子电池中应用最广泛的正极材料。随着消费电子产品对锂离子电池续航时间的要求不断提高,迫切需要进一步提升电池体积能量密度。提高钴酸锂 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27Water-in-salt电解液“界面限域”抑制电极材料溶解机制
在传统液态二次电池中,很多电极材料如过渡金属锰氧化物、硫电极、有机电极等在液体电解液中存在严重溶解现象,从而造成电极材料活性物质损失,容量衰减和寿命短等问题。近些年来,高盐浓度Solvent-in-Salt 【Nature Communications, 4, 2013】和Water-in-salt ...中科院物理研究所 本站小编 Free考研考试 2021-12-27原位电镜技术实现极性拓扑结构相变的原子尺度表征与调控
近些年来先后在理论和实验上发现了铁电材料中可以形成尺寸低至几个纳米的极性拓扑结构,如通量闭合畴、涡旋畴和斯格明子等,由于极性拓扑畴结构具有拓扑保护性,而且尺寸小,引起了探索新一代非易失性超高密度信息存储器件的兴趣。实际器件操作大多是基于外场对结构单元极化态和拓扑相变的调控,研究单个铁电畴结构的极化分 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27原位电镜石墨烯液相反应池方法生长BeO新型二维晶体结构
自然中普遍存在的现象,如云层中水分子在灰尘矿物质表面的聚集造成的降水/降雪、生物矿物质的形成等物理/化学过程等,都与基于结构物态相变的物理机制有关。发展液固相变成像技术,在原子尺度上对液固相变自下而上的成核结晶热力学/动力学行为进行实时观测表征,揭示相变微观物理图像,对生长机理研究和新材料合成及应用 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27