现代精密制造业(如:集成电路板、光栅、高精度光学透镜等)迫切需要具有特定精确膨胀系数甚至零膨胀的材料,因此作为热补偿的负热膨胀(NTE)材料受到广泛关注。一直以来,调整材料组分被认为是调节其NTE行为最有效的方式,同时也可以利用尺寸效应调控NTE行为。但无论是基于声子诱导机制(如:张力效应)或者是电子诱导机制(如:磁有序转变、铁电有序转变或电荷有序转变)的NTE行为均鲜有超越晶格贡献的限制。
中国科学院物理研究所/北京凝聚态物理国家研究中心磁学国家重点实验室M03组胡凤霞研究员、沈保根院士领导的团队一直致力于相变、NTE行为和磁热效应的研究。此前,通过粘接MnCoGe基合金粉末引入残余应力拓宽相变温区,获得了具有宽温区巨大负热膨胀性能的材料[J. Am. Chem. Soc. 137, 1746 (2015)]。在MnCoGe0.99In001合金中,通过自补偿效应实现了近零热膨胀[APL Mater. 5 , 106102 (2017)]。近期,该课题组的胡凤霞研究员、王晶副研究员、沈保根院士及博士研究生沈斐然和周厚博,与美国国家标准局(NIST)的黄清镇教授、物理所何伦华研究员和王建涛研究员等合作,进一步研究了掺Fe的MnNiGe基合金的负热膨胀行为。此前研究表明正分MnNiGe合金的马氏体呈现螺旋反铁磁基态,在MnNiGe中引入Fe会引入Mn-Fe铁磁耦合并瓦解本征的Mn-Mn反铁磁耦合。通过与中国散裂中子源(CSNS)科学中心以及美国NIST中子科学中心的合作,利用中子衍射手段,他们在MnFeNiGe系列合金中首次成功解析出了无公度圆锥螺旋磁结构(图1a、b、c和图2)。第一性原理计算结果表明,MnNiGe中引入Fe原子后,圆锥螺旋磁结构的能量比平面螺旋反铁磁结构的能量低0.8 meV·f.u.-1。
更重要的是,研究发现,具有无公度圆锥螺旋磁结构的Mn0.87Fe0.13NiGe与线性铁磁结构的MnCoGe0.99In0.01相对比(图1f),由于磁交换作用的不同,二者Mn原子最近邻与次近邻间距都出现差异,分别达到3.61%与2.60%。这导致在马氏体相变过程中,Mn0.87Fe0.13NiGe合金的晶格畸变度达到8.68%,明显大于MnCoGe0.99In0.01合金的7.49%。利用这种无公度螺旋磁结构诱导的显著晶格畸变,在粘结MnFeNiGe系列合金中实现了巨大NTE行为(图1f)。195 K (80–275 K)的宽温区范围内,Mn0.87Fe0.13NiGe合金的最大线性负热膨胀幅度达到ΔL/L ~ -23690 × 10-6,超过其平均晶格贡献的限制 (-7121 × 10-6)。这项工作为探索可调节的NTE行为提供了新策略。
需要特别说明的是,该项研究成果是中国散裂中子源(CSNS)科学中心的通用粉末衍射谱仪GPPD准确测到的首个非公度螺旋磁结构(图1a、b、c、e),使GPPD谱仪顺利通过验收,验证了我国散裂中子源GPPD中子衍射谱仪的使用有效性与重要价值。相关工作已发表在英国皇家化学学会期刊[Mater. Horiz. 2020, 7, 804-810]上。文章链接:https://pubs.rsc.org/en/content/articlelanding/2020/mh/c9mh01602c#!divAbstract
图1. 中国散裂中子源(CSNS)的GPPD谱仪验收过程中准确测到的首个非公度螺旋磁结构。Mn0.89Fe0.11NiGe的a)低Q值、b)中Q值、c)高Q值区域中子衍射图谱的精修结果;d) 无公度圆锥螺旋磁结构的示意图,传播矢量沿a轴;e) Mn0.89Fe0.11NiGe的高d值(000)-无公度磁卫星峰,插图为(101)-与(101)+无公度磁卫星峰;f) Mn0.87Fe0.13NiGe与MnCoGe0.99In0.01合金的磁结构、晶体结构以及NTE行为对比。
图2. 美国NIST的BT-1谱仪采集的Mn0.87Fe0.13NiGe中子衍射图谱精修结果
近年来,磁学国家重点实验室M03组研究团队一直专注于固态制冷工质的热效应研究。在巨磁热材料长期研究积累的基础上,最近博士研究生郝嘉政在胡凤霞研究员、王晶副研究员和沈保根院士的指导下,与美国国家标准局(NIST)黄清镇教授、物理所何伦华研究员和王建涛研究员等合作,研究了巨磁热La(Fe1-xSix)13基材料物理压力调控的磁热和压热效应,取得重要进展。研究发现,11.3kbar的物理压力可使La(Fe0.92Co0.08)11.9Si1.1的磁热熵变增大到2倍、9kbar使压热熵变增大到3倍。利用原位加压中子衍射手段并结合第一性原理计算从原子尺度揭示了压力作用下原子局域环境的改变和相变性质、磁热/压热效应的内在关联。
原位加压中子衍射结果表明(图3,图4a),物理压力通过压缩1:13结构的二十面体团簇内部和表面的Fe-Fe键长(B1,B2,B3)使二十面体接近等比例收缩,而二十面体团簇之间Fe-Fe键长(B4,B5)则基本不随压力变化,这与La(Fe,Si)13基化合物引入间隙H原子所产生的化学压力对原子局域环境的影响显著不同(图3)。利用第一性原理计算研究了La(Fe0.92Co0.08)11.9Si1.1顺磁(无磁)态的电子态密度随压力的演化规律(图4d),并根据朗道相变理论、利用费米能级处的电子态密度定量计算了判定相变性质模-模耦合系数b的数值。结果显示,随着压力的增加模-模耦合系数b的符号由正变为负,表明相变性质从二级转变为一级,揭示了物理压力通过引入特殊的晶格畸变使La(Fe0.92Co0.08)11.9Si1.1化合物的相变性质演化并获得显著增强的磁热和压热效应(图4b,c)的物理机制。
这项工作对于全面理解磁晶耦合材料巨磁热、压热效应的物理机制以及获得压力调控的新效应具有重要意义。相关工作已发表在美国化学学会期刊 [Chem. Mater. 2020, 32, 1807-1818]上。文章链接:https://pubs.acs.org/doi/10.1021/acs.chemmater.9b03915
该系列工作获得科技部国家重点研发计划、国家自然科学基金、中国科学院战略性先导科技专项和中国科学院前沿科学重点项目的支持。
图3. 利用原位加压中子衍射(NIST, BT-1)获得的La(Fe0.92Co0.08)11.9Si1.1化合物居里温度附近a)Fe-Fe键长和 b)键角随压力的变化曲线,右图分别是键长和键角在9kbar压力下的变化量随温度的关系。(c) 物理压力和H原子引入的化学压力对原子局域环境影响的对比示意图。
图4. 不同物理压力下La(Fe0.92Co0.08)11.9Si1.1材料的a)中子衍射(531)±特征峰强度随温度关系、b)磁热熵变和c)压热熵变曲线;d)第一性原理计算的不同压力下顺磁(无磁)态费米面附近DOS信息。
Chem. Mater. 32, 1807 (2020).pdf
CM-Supplementary Material.pdf
Mater. Horiz. 7, 804 (2020).pdf
MH-Supplementary Material.pdf
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
中子衍射研究磁结构调控的晶格畸变和负热膨胀以及压力增强的磁热与压热效应
本站小编 Free考研考试/2021-12-27
相关话题/结构 物理 材料 计算 工作
高电压钴酸锂锂离子电池正极材料研究进展
钴酸锂(LiCoO2)是最早商业化的锂离子电池正极材料。由于其具有很高的材料密度和电极压实密度,使用钴酸锂正极的锂离子电池具有最高的体积能量密度,因此钴酸锂是消费电子用锂离子电池中应用最广泛的正极材料。随着消费电子产品对锂离子电池续航时间的要求不断提高,迫切需要进一步提升电池体积能量密度。提高钴酸锂 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27Water-in-salt电解液“界面限域”抑制电极材料溶解机制
在传统液态二次电池中,很多电极材料如过渡金属锰氧化物、硫电极、有机电极等在液体电解液中存在严重溶解现象,从而造成电极材料活性物质损失,容量衰减和寿命短等问题。近些年来,高盐浓度Solvent-in-Salt 【Nature Communications, 4, 2013】和Water-in-salt ...中科院物理研究所 本站小编 Free考研考试 2021-12-27原位电镜技术实现极性拓扑结构相变的原子尺度表征与调控
近些年来先后在理论和实验上发现了铁电材料中可以形成尺寸低至几个纳米的极性拓扑结构,如通量闭合畴、涡旋畴和斯格明子等,由于极性拓扑畴结构具有拓扑保护性,而且尺寸小,引起了探索新一代非易失性超高密度信息存储器件的兴趣。实际器件操作大多是基于外场对结构单元极化态和拓扑相变的调控,研究单个铁电畴结构的极化分 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27原位电镜石墨烯液相反应池方法生长BeO新型二维晶体结构
自然中普遍存在的现象,如云层中水分子在灰尘矿物质表面的聚集造成的降水/降雪、生物矿物质的形成等物理/化学过程等,都与基于结构物态相变的物理机制有关。发展液固相变成像技术,在原子尺度上对液固相变自下而上的成核结晶热力学/动力学行为进行实时观测表征,揭示相变微观物理图像,对生长机理研究和新材料合成及应用 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27高钠含量P2层状氧化物正极材料研究取得新进展
层状金属氧化物(NaxTMO2, TM=过渡金属)不同的组成带来的复杂结构化学对层状堆积结构、钠离子电导率以及氧化还原活性起到决定性作用,为功能性材料的研究开辟了新途径。NaxTMO2主要包括O3和P2两种结构,其中P2结构因为开放的三棱柱扩散通道而具有更快的Na+扩散速率。但是P2型结构初始充电容 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27蛋白质动态结构分子开关:植物捕光天线实现高效捕光和光保护功能间切换的机理研究
植物光合系统既要在多云或阴天低光照条件下保持高效捕光和传能效率,又要在正午强光持续照射下避免由此引发的氧化损伤即光保护。植物的光保护功能是将过剩的激发能以热的形式耗散掉。 在自然环境中,太阳光的辐照强度可以在短时间内呈现出十几倍的涨落。当云的阴影遮蔽住受强光辐照的叶片后,叶片还会将光保护状态持续数分 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27超导量子计算实验进展:动力学相变的超导量子模拟
上世纪七十年代,物理学家费曼问一位年轻的同事:如果孤身去一个未知的险境,而只能携带一个日常工具,你的选择是什么?年轻同事的答案是:瑞士军刀,而费曼自己的选择是:计算器!骄傲如费曼,也许想到,他还是需要一个小小计算器,才能独力重构现代科学的大厦。 不过很快他就改变了主意,八十年代初,费曼指出,经典计算 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27一种高容量钠离子电池层状氧化物模型材料
由于钠资源储量丰富且成本低廉,室温钠离子电池在未来大规模储能应用上表现出巨大的潜力,近两年已经在低速电动车和储能电站上成功实现了应用示范。O3层状过渡金属氧化物具备制备工艺简单、比容量高、首周库仑效率高和环境友好等优点,得到了研究人员的广泛关注。为了进一步发展具有高容量和长循环性能的钠离子电池正极材 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27普适性机械解理技术制备大面积二维材料
二维材料家族涵盖了绝缘体、半导体、金属和超导体,并展现出许多不同于三维材料的新奇物性,是近年来凝聚态物理和材料科学领域的研究热点。制备高质量的二维材料,特别是原子层量级的超薄材料,是开展二维材料前沿探索的基础。2004年,诺贝尔物理学奖得主Geim教授和Novoselov教授最早发展出了机械解理技术 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27二维室温铁磁材料研究取得进展
当二维材料的厚度降低至原子级幅度时可导致很多新奇物理现象的出现,使得二维材料成为当今凝聚态物理和材料科学的研究热点。二维铁磁体作为二维材料家族的重要组成部分,因其独特的物理特性而备受关注。通常,随着二维铁磁体厚度的降低,其铁磁有序居里温度TC也会降低,鲜有材料会随着厚度的降低TC反而升高。 近期, ...中科院物理研究所 本站小编 Free考研考试 2021-12-27