光照射在固体材料上会使其中的电子形成两类激发:一种是电子-空穴的对激发,称为激子;另一种是电子的集体振荡,称为等离激元。等离激元有很多奇特的应用,例如等离激元通过与光耦合形成图1所示的极化激元 (Surface plasmon polariton, SPP),在电路中进行能量和信号的传输。理想情况下,等离激元有着易于激发并且不易衰减的特性。在传统材料比如金、银等金属中,由于强烈的朗道阻尼效应和等离激元与声子散射作用,等离激元有着极低的空间限域性与极高的传播损失率。这些问题使得等离激元在电子信息、催化能源以及生物技术等方面的应用都受到限制。因此,制备和发现性能优异的量子材料,使其具有良好的等离激元特性成为材料应用领域一个重要的方向。
图1. 等离激元极化激元在材料中产生和传播的示意图。
二维材料是实现这一目标的理想平台,在二维材料中,由于等离激元被限制在一个平面内,其衰减得到了极大的抑制。石墨烯作为的二维材料的典型代表,已经成为一个极其热门的等离激元材料。然而,作为半金属,石墨烯中载流子浓度较低,因此其等离激元的频率远低于常见的可见光区。其他的二维材料,也多为半金属型(如硅烯和二硒化钛)或半导体型(如氮化硼和二硫化钼),因而无法弥补载流子浓度低这一缺陷。因此,寻找合适的二维金属材料,不仅可以产生低衰减率的等离激元,而且可以与可见光进行耦合,在集成光子学器件中有着重要的应用。硼烯是一种新型二维材料,其独特之处在于其本征的金属性,预示着硼烯是很有希望的等离激元材料。
图2. (a) β12型硼烯晶格结构以及布里渊区; (b) β12型硼烯等离激元沿Γ-X 与Γ-Y方向的色散关系。图中展示了低能模式(LE)、高能模式(HE),和石墨烯中的等离激元。
最近,中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理国家重点实验室SF10组的博士后廉超(现为德州大学奥斯汀分校博士后)和博士生胡史奇(共同第一作者),以及已毕业的张进博士和程才博士,在孟胜研究员的指导下,与北京师范大学袁喆教授和北京计算科学中心高世武教授合作,通过第一性原理含时密度泛函模拟,计算了实验上合成的β12型硼烯中的奇异的等离激元特性(图2和图3)。
图3. (a) β12型硼烯等离激元限域能力λair/λp随能量的变化; (b) β12型硼烯等离激元传播损失率Re[q]/Im[q]随能量的变化。
他们发现,相比于石墨烯和黑磷等材料,硼烯在保持二维材料较强的光与材料相互作用的同时,由于其金属特性以及特殊的狄拉克能带结构,它在电子浓度、等离激元频域等方面有着优异的等离激元性能。研究发现硼烯中存在两类载流子:中心在X点的一维电子气,和中心在Y点的二维电子气(图4)。两种载流子分别对应了硼烯等离激元的两个分支:二维电子气形成了各向均匀的高能量分支,而一维电子气则形成了各向异性的低能量分支。这两种模式有着涵盖太赫兹到紫外波段广泛的频率范围,因此可以与可见光实现充分耦合。同时,两支等离激元具有和石墨烯等离激元同样的低衰减率(图3)。
图4. (a) β12型硼烯三维能带结构; (b) β12型硼烯布里渊区电子气分布;(c) β12型硼烯电子气带内跃迁分布。
更为独特的是,硼烯等离激元的低能量分支仅在Γ-X方向形成和传播。不同于以往一维结构的等离激元,这一发现意味着在二维结构中依然可以存在单向传输的一维等离激元模式。更深入的电子结构分析证明了这个一维模式源自于硼烯独特的电子结构,并且由硼烯中狄拉克电子的带内跃迁所贡献。研究表明,二维硼烯中存在着比想象中更为丰富的光与物质的相互作用图像,二维、一维电子气与狄拉克电子气集体激发的相互作用是导致奇异量子等离激元出现的重要原因,这也赋予其低损耗、宽频域和高定向等优良特性。这一发现拓展了以石墨烯为代表的二维材料等离激元这一研究领域,为丰富等离激元光子学材料提供了新的思路。
相关成果近日发表在《物理通讯快报》(Physical Review Letters) 上https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.116802。该工作得到了科技部重点研发计划(2016YFA0300902,2015CB921001)和国家自然科学基金委(11774396, 91850120, 11934004)的资助。作者感谢与物理所陆凌研究员的有益讨论。
PRL 125, 116802 (2020).pdf
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
发现二维金属中奇异的等离激元
本站小编 Free考研考试/2021-12-27
相关话题/材料 电子 结构 传播 金属
合金新物态——金属冰川玻璃的发现
冰川玻璃态作为一种新型非晶亚稳态,它的提法最早出现于1996年。当年,美国加州大学洛杉矶分校的Kivelson研究组发现,如果在一种分子液体——亚磷酸三苯酯(TPP)——的过冷液体区间内的特定温度下进行保温,TPP会转变成一种能量介于非晶态和晶态之间的新物态,即冰川玻璃态。这种转变被称为冰川化过程, ...中科院物理研究所 本站小编 Free考研考试 2021-12-27实空间新型拓扑磁激发在磁性二维材料以及人工反铁磁薄膜中的发现与调控
兼具温度、电流、磁场等多物理场协同调控的高分辨洛伦兹透射电镜在实空间探索纳米尺度新型磁畴结构,原位揭示与磁相关的新奇物理现象微观机制以及自旋原理性器件应用方面发挥着越来越重要的作用。中国科学院物理研究所/北京凝聚态物理国家研究中心磁学国家重点实验室M07组张颖研究团队在沈保根院士、磁学实验室以及物理 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27在磁性外尔半金属中首次提出“自旋轨道极化子”概念
磁性量子材料的缺陷工程及其局域量子态自旋的调控,有望构筑未来实用化的自旋量子器件,是目前凝聚态物理研究的热点领域之一。近几年,基于过渡金属的笼目晶格(kagome lattice)化合物是揭示和探索包括几何阻挫、关联效应和磁性以及量子电子态的拓扑行为等在内的丰富的物理学性质的一个新颖材料平台。在这些 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27数据驱动具有负泊松比二维材料及具有量子反常霍尔效应二维材料异质结的高通量计算取得重要进展
随着科技的发展,传统电子元器件在不断微型化过程中面临着诸多挑战。寻找新材料、新结构和新原理器件是推动信息化器件进一步发展的关键。近年来,二维材料由于仅有单个或几个原子层厚度,量子效应凸显,呈现出许多区别于传统三维材料的新奇物性和卓越性能,有望成为新原理型光、电、磁等器件的核心材料。因此,探索具有优异 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27高压诱发的量子自旋液体材料的Mott相变和超导
高压、低温和强磁场等极端条件在探索新材料揭示新物理现象方面发挥着越来越重要的作用。研究材料在这些极端条件下的构效关系,能揭示许多奇异且具有潜在应用价值的物理现象。中国科学院物理研究所/北京凝聚态物理国家研究中心极端条件物理重点实验室靳常青团队长期开展新兴功能材料在综合极端条件下的构效关系研究,自主发 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27二维精雕,游刃有余:一种二维材料图案化的直写加工技术
二维材料具有原子级厚度和非常高的比表面积,并且由于所有原子处于表面导致其表面对表面吸附和外界环境十分敏感。二维半导体材料在电子学与光电子学器件领域具有广阔的应用前景,有望取代硅成为下一代小型化电子器件的核心材料。为了实现此类应用,首先需要对材料进行剪裁。通过常规的微纳加工技术,包括光刻和反应离子干法 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27电子级二维半导体与柔性电子器件
在半导体器件不断小型化以及柔性化的主流趋势下,以二硫化钼(MoS2)等过渡金属硫属化合物(TMDC)为代表的二维半导体材料显示出独特的优势。国际半导体联盟在2015年的技术路线图(International Technology Roadmap for Semiconductors, ITRS)中明 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27二维材料复合光纤实现超高非线性效应
随着光通信技术的发展,光纤已经成为现代信息社会的重要支撑。非线性光纤作为一种特殊用途光纤,不仅在新型光纤通讯技术中有重要应用和发展前景,而且在光波长转换、超快光纤激光和超连续激光等光物理基础和器件研究等领域具有很大应用潜力。然而,传统石英光纤仅表现出非常微弱的奇数阶非线性效应,严重限制了在非线性光学 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27中子衍射研究磁结构调控的晶格畸变和负热膨胀以及压力增强的磁热与压热效应
现代精密制造业(如:集成电路板、光栅、高精度光学透镜等)迫切需要具有特定精确膨胀系数甚至零膨胀的材料,因此作为热补偿的负热膨胀(NTE)材料受到广泛关注。一直以来,调整材料组分被认为是调节其NTE行为最有效的方式,同时也可以利用尺寸效应调控NTE行为。但无论是基于声子诱导机制(如:张力效应)或者是电 ...中科院物理研究所 本站小编 Free考研考试 2021-12-27FeSe超导体向列相光电子能谱的精密观测揭示存在未知对称破缺的证据
FeSe 超导体具有简单的晶体结构,在低温下不具有反铁磁长程序, 但在90K以下进入向列序态,在超导温度(Tc)9K以下呈现出超导和向列序共存的状态。因此,FeSe超导体是研究铁基超导体中向列相相关物理以及超导机理的理想体系。 FeSe的众多衍生物,如插层FeSe、KxFe2-ySe2、 (Li,F ...中科院物理研究所 本站小编 Free考研考试 2021-12-27