删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

向列量子临界点及向列量子涨落导致电子有效质量增大

本站小编 Free考研/2020-05-21

常规超导的机制是两个电子通过交换声子(晶格振动的量子)形成电子对(库珀对),这些电子对的凝聚导致超导态。原则上,其他类型的量子也可以起到类似声子的作用。例如,铜氧化物高温超导体中,有人认为两个电子通过交换顺磁振子(磁涨落的量子)可以实现非常规超导。
  铁基高温超导体中除磁有序及磁涨落外,还存在另一种序:电子向列序。这是一种与液晶相似的性质,即电子向列态破缺晶体的旋转对称性。近来,电子向列序的涨落对物性(超导)的影响(作用)成为人们关心的一个重要科学问题。最近,中国科学院物理研究所/北京凝聚态物理国家研究中心SC9组的博士研究生王春光等人通过核磁共振测量发现,在NaFe1-xCoxAs的超导态下存在一个向列量子临界点(这里电子向列序消失),由此造成的量子涨落导致电子有效质量的增大。这个发现表明,电子向列序的涨落是一种新的量子,它与声子或顺磁振子一样,对物性有深刻的影响,有助于提高超导的转变温度。
  在多数铁基高温超导体中,反铁磁和电子向列序的转变温度非常接近,由它们外推得出的量子临界点不可区分。几年前,该研究组的周睿(现中科院特聘研究员)等人在靳常青研究组(EX5组)合成的NaFe1-xCoxAs样品上进行核磁共振实验,证实了该体系中存在反铁磁序和伴随结构相变的向列序(Phys. Rev. B 93, 060502(R) (2016).),并发现这是一个非常独特的体系。首先,不同于其他铁基超导体系,该体系的结构相变温度Ts与反铁磁相变温度TN在整个相图中一直相差很大。其次,该体系只需要2.7%的Co替代量就可以实现最高超导临界温度Tc,极大地减小了无序和杂质对量子临界现象的影响。因此,NaFe1-xCoxAs体系非常适合研究电子向列序的量子临界现象及它对超导的影响。但是,由于超导相的存在,探测T=0的量子临界点成为一个非常困难的课题。
最近,两个研究组通力合作,用核磁共振方法研究零温London穿透深度λL(0)随掺杂x的变化。磁场在超导体中形成三角形或四角形的磁通格子,导致超导体内部磁场分布不均匀,空间不均匀的程度取决于London穿透深度,而核磁共振的谱展宽是探测不均匀磁场分布的有力手段。
基于这个原理,研究团队发现λL(0)2xM=0.027和xc=0.032处有两个非常尖锐的峰,如图1所示。通过测量自旋晶格弛豫率1/T1,他们发现由反铁磁自旋涨落导致的1/T1在低温下几乎不随温度变化(图2),这表明零温下交错磁化率发散性地增长,从而确认xM是反铁磁量子临界点。
  xc是向列序消失的位置,核磁共振和喇曼光谱研究结果都表明,正常态存在很强的向列序涨落。研究团队还发现,电阻率在这个位置呈现线性温度关系,进一步证明了向列序量子涨落对物性的影响。λL(0)2是表征零温性质的物理量,与电子有效质量m*成正比。因此,xc处穿透深度出现的峰说明在该处存在一个向列序的量子临界点,量子临界涨落导致m*的急剧增强。
  在反铁磁和向列序量子临界点不可区分的体系中,Tc随掺杂存在一个很明显的峰,其中心位于xM附近。而在NaFe1-xCoxAs体系中,即使远离xMTc也保持较高值且几乎不随掺杂变化,说明向列序的涨落可以增强超导配对。
  这项研究首次提供了超导态下存在向列序量子临界点的确凿证据,为理解高温超导机理提供了新的线索。相关研究结果已经发表在Phys. Rev. Lett. 121, 167004 (2018).
  该工作得到国家自然科学基金(课题号11634015),科技部(课题号2017YFA0302904, 2016YFA0300502)以及中科院先导B专项(XDB07000000)的支持。
图1:(a)\(\lambda_{L}^{2}(0)\)随掺杂的变化,两个尖锐的峰表明电子有效质量在该处增大。
(b) NaFe1-xCoxAs体系的相图。Ts为向列序转变温度,TN为反铁磁转变温度,Tc是超导转变温度。物理量θ是从1/T1得到的参量,用来衡量偏离磁量子临界点(θ= 0)的距离。
图2:不同掺杂量样品中来自反铁磁涨落贡献的1/T1c随温度的变化。x = 0.027 样品 在低温不随温度变化,表明其是反铁磁量子临界点。


PhysRevLett.121.167004(2018).pdf
相关话题/电子 质量

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 新型双元二维蜂窝结构及其非对称性电子-空穴行为
    二维体系因其低维空间属性和量子约束效应展现出独特的量子现象与材料性质,是当今凝聚态物理和材料科学的研究前沿。目前,二维体系的主要研究对象是层状二维材料,在自然界中有对应的三维体材料。有限种类的层状材料势必限制了二维体系的研究和应用范围。其实,从表面物理的观点看,独立于半导体体相的表面重构也是一种理想 ...
    本站小编 Free考研 2020-05-21
  • 氧化物界面自旋极化二维电子气
    研究发现,当条件合适时,在电子关联氧化物异质界面LaAlO3/SrTiO3(LAO/STO)附近可形成二维电子液体。与常规半导体二维电子气不同,势阱中的电子具有d电子特征,可以占据不同的d轨道,从而带来了一系列新特性例如二维超导电性以及磁性与超导电性共存等。  大家知道,获得自旋极化二维电子气是自旋 ...
    本站小编 Free考研 2020-05-21
  • 激光加速新进展:固体靶超高电荷量相对论电子加速
    近几十年来,新型激光等离子体加速器得到了快速发展。相比于传统的射频加速器,激光等离子加速器在加速梯度和束流尺寸等方面具有显著的优势。传统射频加速器利用波导腔内的振荡电磁场来加速带电粒子,受限于加速介质的电击穿强度,能量增益一般为~100MV/m。激光等离子体加速器的加速介质为等离子体,其加速梯度一般 ...
    本站小编 Free考研 2020-05-21
  • 重电子掺杂铁硒基超导体的高压研究取得新进展
    在非常规超导体系中,通过引入载流子、施加物理或化学压力等调控手段,可有效调控超导相与其它电子序的竞争,可能诱导出两个超导相,对应超导转变温度Tc呈现出双拱形(double dome)相图。例如,对重费米子CeCu2(Si1-xGex)2体系施加压力可以诱导出两个超导相,分别对应反铁磁序的量子临界点和 ...
    本站小编 Free考研 2020-05-21
  • 巡游电子量子临界行为研究取得进展
    按照朗道费米液体理论,金属中巡游电子间相互作用的效果是其质量和动力学性质得到了修正,变成准粒子。准粒子之间没有相互作用,当温度趋于零的时候,准粒子的寿命趋于无穷,准粒子权重趋于有限值。然而,在大多数关联巡游电子系统中,尤其当靠近量子临界点时,如重费米子系统中的磁性量子临界点,铜基、铁基超导体中的反铁 ...
    本站小编 Free考研 2020-05-21
  • 细菌叶绿素分子激发态多振动模耦合量子相干态的飞秒时间分辨二维电子光谱测量
    玻尔曾经说过,谁要是说他懂了量子理论,那么说明他完全不了解量子力学(If you think you can talk about quantum theory without feeling dizzy, you haven't understood the first thing about i ...
    本站小编 Free考研 2020-05-21
  • 三维拓扑绝缘体电子退相干的新机制
    固态系统的量子输运性质与电子的波动性密切相关。在低温下,电子波能在很长距离上保持相干性,波的干涉带来了丰富多彩的介观物理效应,如 Aharonov-Bohm效应、Altshuler-Aronov-Spivak效应、普适电导涨落和弱局域化效应,等等。研究材料中的电子的退相干机制不仅有助于深入理解量子输 ...
    本站小编 Free考研 2020-05-21
  • 复杂氧化物界面二维电子液体的自旋流-电流转换效应
    自旋电子学可能导致面向未来的新一代信息技术。自旋流的产生、调控以及自旋流-电流的转换是自旋电子学研究的核心问题。具有Rashba 形式自旋-轨道耦合的二维电子体系为自旋流的高效调控提供了新机遇。对于二维电子体系,V. M. Edelstein 预言存在一种新物理效应,即,Edelstein效应:与二 ...
    本站小编 Free考研 2020-05-21
  • 首届“超快电子显微术(UTEM)发展及应用研讨会”成功举办
    6月14日,首届全国“超快电子显微术(UTEM)发展及应用研讨会”在中国科学院物理研究所顺利召开,来自全国17所高校、研究机构和科技企业的50余位专家****参加了会议。本次会议由中国科学院物理研究所与捷欧路(北京)科贸有限公司联合主办,旨在促进时间分辨电子显微术和结构动力学研究领域科研人员之间的交 ...
    本站小编 Free考研 2020-05-21
  • 多措并举,多管齐下,印包学院全力保障网络教学秩序和质量
    网络教学六周以来,印包学院高度关注教师用心组织网络课堂、学生专心参与网络课堂情况,多措并举,多管齐下,保障网络教学良好、有序运行。网课运行之初,印包学院对各种网络教学平台进行推演,选用了QQ群投屏直播(即屏幕分享模式)、印苑e学堂+超星直播等作为主要网络教学平台。绝大多数老师采用上课期间投屏直播授课 ...
    本站小编 Free考研 2020-05-17