大家知道,获得自旋极化二维电子气是自旋电子学研究追求一个重要目标。但是,由于LaAlO3 和SrTiO3 都是非磁性氧化物,界面磁性通常很弱,难以得到具有明显自旋极化特征的二维电子气。到目前为止,获得自旋极化二维电子气仍然是具有挑战性的课题。
在SrTiO3-基二维电子气之外,还有一类重要的低维电子体系很少被注意到,就是驻留于KTaO3界面的二维电子气。尽管KTaO3和SrTiO3具有很多相似的物理性质,例如高介电常数和量子顺电性,但是KTaO3 是5d 过渡金属氧化物,且具有强得多的自旋-轨道耦合。特别地,因为5d电子的优异的巡游性,KTaO3 可能对磁性近邻更为敏感。
最近,中国科学院物理研究所/北京凝聚态物理国家研究中心磁学国家重点实验室博士研究生张洪瑞、张慧等在孙继荣研究员指导下,利用磁性绝缘氧化物EuO与KTaO3组合,成功地在EuO-KTaO3界面获得了高自旋极化、高导电性的二维电子气。研究发现二维电子气表现出标志其具有明显磁有序特征的滞后磁电阻效应与反常霍尔效应,且这些效应加温至70 K时仍然可分辨。此前在LaAlO3/SrTiO3 二维电子气中发现的滞后磁电阻效应只出现在0.4K以下的温区。进一步研究发现,EuO/ KTaO3 二维电子气的磁行为与EuO的磁行为之间存在密切关联。密度泛函理论分析表明,界面附近EuO的磁极化的d电子与KTaO3中的电子波函数重叠,导致了后者的自旋极化。这一工作为探索高性能自旋极化二维电子体系提供了新途径,为二维电子液体新奇物理效应的探索拓展了新空间。
这里,样品制备与北京大学韩伟教授合作完成,密度泛函理论计算工作和物理所刘邦贵教授合作完成。
这一研究发表在Physical Review Letters 上。该工作得到了科技部(2016YFA0300701, 2015CB921104, 2017YFA0206300 and 2014CB920902)、国家自然科学基金委项目(11520101002, 11574006, 51590880, 51531008 and 11704011)和中国科学院重点项目的支持。
文章链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.116803
图1. KTaO3 衬底上EuO外延薄膜的结构表征.(a) EuOzai在KTaO3 上生长示意图。(b)生长过程反射高能电子衍射图。(c)θ-2θ x-射线衍射谱,表明了理想的外延生长。(d) EuO 薄膜 (204) 反射点的倒空间扫描图像。 |
图2. EuO/KTaO3 异质结得磁性与电子输运性质。(a) EuO 薄膜的热磁曲线,表明是理想的EuO相,居里温度71 K。 (b) 沿着面内与垂直平面测得的磁化曲线。(c)-(e) 表明EuO/KTaO3 界面形成了理想的二维电子气。 |
图3. EuO/KTaO3 二维电子气的磁电输运性为。 (a) 在不同温度下得到的磁电阻,发生了明显的磁滞后,说明存在磁有序。(b) 25K磁电阻曲线的放大。(c) 磁电阻峰值磁场和EuO矫顽力的对应,表明磁畴结构变化引起磁电阻。(d) 横向磁场下的磁电阻。(e) 反常霍尔效应。 |
图4. 理论计算的(EuO/KTaO3)6超晶格模型。 (b)-(c) A-位Ta原子投影态密度,分别对应TaO2/EuO和KO/EuO界面。 |
PRL,121,116803(2018).pdf