1. 安徽工业大学材料科学与工程学院,安徽 马鞍山 2430022. 安徽工业大学冶金减排与资源综合利用教育部重点实验室,安徽 马鞍山 243002
收稿日期:
2018-07-27修回日期:
2018-10-30出版日期:
2019-06-22发布日期:
2019-06-20通讯作者:
冒爱琴Research progress in preparation and application of high-entropy-alloy powders
Feng QUAN1, Houzheng XIANG1, Lei YANG1, Qihui WU1, Aiqin MAO1,2*, Haiyun YU1,21. School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, China2. Key Laboratory of Metallurgical Emission Reduction & Resource Recycling, Ministry of Education, Anhui University of Technology, Ma'anshan, Anhui 243002, China
Received:
2018-07-27Revised:
2018-10-30Online:
2019-06-22Published:
2019-06-20Contact:
MAO Ai-qin 摘要/Abstract
摘要: 高熵合金是近几年发展起来的新型合金,由于其优异的性能,如高延展性、高强度、优异的耐磨性、优异的耐蚀性和优异的高温稳定性,已成为热点材料之一。高熵合金粉体作为制备块体、涂层、薄膜材料及其它功能材料的原料,有着广阔的应用前景,但目前对高熵合金粉体尤其是高熵合金纳米粉体的研究较少。本工作根据当前高熵合金的研究进展,对高熵合金相形成的判据进行了划分,主要包括混合熵判据、混合焓判据、Ω判据和Hume?Rothery固溶理论判据。通过对各判据的总结,阐述了高熵合金固溶体相的形成规律,综述了高熵合金超细粉体和纳米粉体的制备方法,主要包括机械合金化法、气/水雾化法、化学还原法、碳热震荡法、等离子电弧放电法和扫描探针光刻技术,分析比较了不同方法的优缺点和应用前景,指出了高熵合金领域当前存在的问题和相应的解决方法,并对未来的发展作了展望。
引用本文
权峰 项厚政 杨磊 吴其辉 冒爱琴 俞海云. 高熵合金粉体制备及应用研究进展[J]. 过程工程学报, 2019, 19(3): 447-455.
Feng QUAN Houzheng XIANG Lei YANG Qihui WU Aiqin MAO Haiyun YU. Research progress in preparation and application of high-entropy-alloy powders[J]. Chin. J. Process Eng., 2019, 19(3): 447-455.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218259
http://www.jproeng.com/CN/Y2019/V19/I3/447
参考文献
[1] Yeh J W, Chen S K, Lin S J, et al.Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes[J]. Adv. Eng. Mater., 2004, 6 (5), 299-303. [2] Zhang Y, Zuo T T, Tang Z, et al.Microstructures and properties of high-entropy alloys[J]. Prog. Mater Sci., 2014, 61, 1-93. [3] Yeh J W, Chen Y L, Lin S J, et al.High-Entropy Alloys – A New Era of Exploitation[J]. Mater. Sci. Forum, 2007, 560, 1-9. [4] Tsai M H, Yeh J W.High-Entropy Alloys: A Critical Review[J]. Mater. Res. Lett., 2014, 2 (3), 107-123. [5] Lu Y, Gao X, Dong Y, et al.Preparing bulk ultrafine-microstructure high-entropy alloys via direct solidification[J]. Nanoscale, 2018, 10 (4), 1912-1919. [6] Joo S H, Kato H, Jang M J, et al.Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering[J]. J. Alloys Compd., 2017, 698, 591-604. [7] Shang C, Axinte E, Sun J, et al.CoCrFeNi(W1 ? xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering[J]. Mater. Des., 2017, 117, 193-202. [8] He Y, Zhang J, Zhang H, et al.Effects of Different Levels of Boron on Microstructure and Hardness of CoCrFeNiAlxCu0.7Si0.1By High-Entropy Alloy Coatings by Laser Cladding[J]. Coatings, 2017, 7 (1). [9] Braeckman B R, Boydens F, Hidalgo H, et al.High entropy alloy thin films deposited by magnetron sputtering of powder targets[J]. Thin Solid Films, 2015, 580, 71-76. [10] He J Y, Wang H, Huang H L, et al.A precipitation-hardened high-entropy alloy with outstanding tensile properties[J]. Acta Materialia, 2016, 102, 187-196. [11] Liu B, Wang J, Chen J, et al.Ultra-High Strength TiC/Refractory High-Entropy-Alloy Composite Prepared by Powder Metallurgy[J]. Jom, 2017, 69 (4), 651-656. [12] 张勇, 非晶和高熵合金, 科学出版社, 2010. [13]Zhang Y, Amorphous and High Entropy Alloys, Science Press, 2010. [14] Otto F, Yang Y, Bei H, et al.Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys[J]. Acta Mater., 2013, 61 (7), 2628-2638. [15] 张勇, 陈明彪, 杨潇, 等.先进高熵合金技术[J]. 化工出版社, 2018. [16]Zhang Y, Chen M X, Yang W, et al.Advanced High Entropy Alloy Technology[J]. Chemical Industry Press, 2018. [17] Yang X, Zhang Y.Prediction of high-entropy stabilized solid-solution in multi-component alloys[J]. Mater. Chem. Phys., 2012, 132 (2), 233-238. [18] Wang Z, Huang Y, Yang Y, et al.Atomic-size effect and solid solubility of multicomponent alloys[J]. Scripta Mater., 2015, 94, 28-31. [19] Zhang Y, Lu Z P, Ma S G, et al.Guidelines in predicting phase formation of high-entropy alloys[J]. MRS Communications, 2014, 4 (2), 57-62. [20] Zhang Y, Zhou Y J, Lin J P, et al.Solid-Solution Phase Formation Rules for Multi-component Alloys[J]. Adv. Eng. Mater., 2008, 10 (6), 534-538. [21] Fang S, Xiao X, Xia L, et al.Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses[J]. J. Non-Cryst. Solids, 2003, 321 (1), 120-125. [22] Guo S, Ng C, Lu J, et al.Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys[J]. J. Appl. Phys., 2011, 109 (10), 103505. [23] Tsai M H, Tsai K Y, Tsai C W, et al.Criterion for Sigma Phase Formation in Cr- and V-Containing High-Entropy Alloys[J]. Mater. Res. Lett., 2013, 1 (4), 207-212. [24] Guo S, Liu C T.Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase[J]. Progress in Natural Science: Materials International, 2011, 21 (6), 433-446. [25] 蒋丽, CoFeNiV(Mo, Nb)高熵合金的组织演变及力学性能研究, 大连理工大学博士学位论文, 2016. [26]Jiang L, Research on the microstructure evolution and mechanical properties of CoFeNiV (Mo, Nb) high-entropy alloy, in, PhD thesis of Dalian University of Technology, 2016. [27] Salishchev G A, Tikhonovsky M A, Shaysultanov D G, et al.Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system[J]. J. Alloys Compd., 2014, 591, 11-21. [28] 龙卧云.机械合金化制备Zr-Al-Ni-Cu-Y非晶合金粉末及其低压烧结工艺探索[J]. 中南大学博士学位论文, 2012. [29]Long W Y.Preparation of Zr-Al-Ni-Cu-Y Amorphous Alloy Powder by Mechanical Alloying and Its Low Pressure Sintering Process[J]. Zhongnan University PhD thesis, 2012. [30] Yu P F, Zhang L J, Cheng H, et al.The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering[J]. Intermetallics, 2016, 70, 82-87. [31] Ji W, Fu Z, Wang W, et al.Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy[J]. J. Alloys Compd., 2014, 589, 61-66. [32] Mohanty S, Maity T N, Mukhopadhyay S, et al.Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties[J]. Mater. Sci. Eng., A, 2017, 679, 299-313. [33] Varalakshmi S, Kamaraj M, Murty B S.Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying[J]. Mater. Sci. Eng., A, 2010, 527 (4), 1027-1030. [34] Varalakshmi S, Kamaraj M, Murty B S.Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying[J]. J. Alloys Compd., 2008, 460 (1), 253-257. [35] Maulik O, Kumar D, Kumar S, et al.Structural evolution of spark plasma sintered AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) high entropy alloys[J]. Intermetallics, 2016, 77, 46-56. [36] Praveen S, Murty B S, Kottada R S.Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys[J]. Mater. Sci. Eng., A, 2012, 534, 83-89. [37] 陈永星, 朱胜, 王晓明, 等.AlFeCrCoNi高熵合金的机械合金化法制备及退火行为研究[J]. 西安工业大学学报, 2015, 2, 162-166. [38]Chen Y X, Zhu S, Wang X M, et al.Preparation and Annealing Behavior of AlFeCrCoNi High-Entropy Alloy by Mechanical Alloying[J]. Journal of Xi' an Technological University, 2015, 2, 162-166. [39] Raphel A, Kumaran S, Kumar K V, et al.Oxidation and Corrosion resistance of AlCoCrFeTiHigh Entropy Alloy[J]. Materials Today: Proceedings, 2017, 4 (2, Part A), 195-202. [40] Kumar D, Maulik O, Kumar S, et al.Phase and thermal study of equiatomic AlCuCrFeMnW high entropy alloy processed via spark plasma sintering[J]. Mater. Chem. Phys., 2018, 210, 71-77. [41] Ding P, Mao A, Zhang X, et al.Preparation, characterization and properties of multicomponent AlCoCrFeNi2.1 powder by gas atomization method[J]. J. Alloys Compd., 2017, 721, 609-614. [42] Yang C C, Hang Chau J L, Weng C J, et al.Preparation of high-entropy AlCoCrCuFeNiSi alloy powders by gas atomization process[J]. Mater. Chem. Phys., 2017, 202, 151-158. [43] Ei?mann N, Kl?den B, Wei?g?rber T, et al.High-entropy alloy CoCrFeMnNi produced by powder metallurgy[J]. Powder Metall., 2017, 60 (3), 184-197. [44] Yim D, Jang M J, Bae J W, et al.Compaction behavior of water-atomized CoCrFeMnNi high-entropy alloy powders[J]. Mater. Chem. Phys., 2018, 210, 95-102. [45] 董阳阳.真空雾化制备CoCrAlTaY 高温合金粉末及其涂层抗氧化性能[J]. 昆明理工大学硕士学位论文, 2015. [46]Dong Y Y.Preparation of CoCrAlTaY Superalloy Powder by Vacuum Atomization and Its Antioxidant Properties[J]. Kunming University of Science and Technology, Master' s Thesis, 2015. [47] 陈美英, 胡敦元, 孙建刚, 等.真空雾化法制备MCrAlTaY 合金粉末[J]. 热喷涂技术, 2010, (1), 27-29. [48]Chen M Y, Hu D Y, Sun J G, et al.Preparation of MCrAlTaY alloy powder by vacuum atomization method[J]. Thermal Spray Technology, 2010, (1), 27-29. [49] Chen P C, Liu G, Zhou Y, et al.Tip-Directed Synthesis of Multimetallic Nanoparticles[J]. J. Am. Chem. Soc., 2015, 137 (28), 9167-9173. [50] Chen C, Kang Y, Huo Z, et al.Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces[J]. Science, 2014, 343 (6177), 1339-1343. [51] Gordon T R, Schaak R E.Synthesis of Hybrid Au-In2O3 Nanoparticles Exhibiting Dual Plasmonic Resonance[J]. Chem. Mater., 2014, 26 (20), 5900-5904. [52] Linic S, Aslam U, Boerigter C, et al.Photochemical transformations on plasmonic metal nanoparticles[J]. Nature Materials, 2015, 14, 567. [53] N.S A, Eugenii K, Itamar W. Nanoparticle Arrays on Surfaces for Electronic, Optical, and Sensor Applications[J]. ChemPhysChem, 2000, 1 (1), 18-52. [54] Mohan P, Takahashi M, Higashimine K, et al.AuFePt Ternary Homogeneous Alloy Nanoparticles with Magnetic and Plasmonic Properties[J]. Langmuir, 2017, 33 (7), 1687-1694. [55] Aslam U, Chavez S, Linic S.Controlling energy flow in multimetallic nanostructures for plasmonic catalysis[J]. Nature Nanotechnology, 2017, 12, 1000. [56] Zhong C J, Luo J, Njoki P N, et al.Fuel cell technology: nano-engineered multimetallic catalysts[J]. Energy & Environmental Science, 2008, 1 (4), 454-466. [57] Bogdanov A A, Dixon A J, Gupta S, et al.Synthesis and Testing of Modular Dual-Modality Nanoparticles for Magnetic Resonance and Multispectral Photoacoustic Imaging[J]. Bioconjugate Chem., 2016, 27 (2), 383-390. [58] Ferrando R, Jellinek J, Johnston R L.Nanoalloys:? From Theory to Applications of Alloy Clusters and Nanoparticles[J]. Chem. Rev., 2008, 108 (3), 845-910. [59] Singh M P, Srivastava C.Synthesis and electron microscopy of high entropy alloy nanoparticles[J]. Mater. Lett., 2015, 160, 419-422. [60] Ortiz N, Weiner R G, Skrabalak S E.Ligand-Controlled Co-reduction versus Electroless Co-deposition: Synthesis of Nanodendrites with Spatially Defined Bimetallic Distributions[J]. ACS Nano, 2014, 8 (12), 12461-12467. [61] 王国涛.高温合金纳米粒子电弧法制备及光谱特征[J]. 大连理工大学硕士学位论文, 2015. [62]Wang G T.Preparation and Spectral Characteristics of High Temperature Alloy Nanoparticle Arc Method[J]. Master thesis of Dalian University of Technology, 2015. [63] Safari A, Gheisari K, Farbod M.Characterization of Ni ferrites powders prepared by plasma arc discharge process[J]. J. Magn. Magn. Mater., 2017, 421, 44-51. [64] Mohammadian A R, Hajarpour S, Gheisari K, et al.Synthesis of Ni–Mn ferrite–chromite nanoparticles through plasma arc discharge[J]. Mater. Lett., 2014, 133, 91-93. [65] Karbalaei Akbari M, Derakhshan R, Mirzaee O.A case study in vapor phase synthesis of Mg–Al alloy nanoparticles by plasma arc evaporation technique[J]. Chem. Eng. J., 2015, 259, 918-926. [66] Geng D Y, Park W Y, Kim J C, et al.Synthesis and Characterization of FeCoNiAl Nanocapsules by Plasma arc Discharge Process[J]. J. Mater. Res., 2011, 20 (09), 2534-2543. [67] Mao A, Ding P, Quan F, et al.Effect of aluminum element on microstructure evolution and properties of multicomponent Al-Co-Cr-Cu-Fe-Ni nanoparticles[J]. J. Alloys Compd., 2018, 735, 1167-1175. [68] Chen P C, Liu X, Hedrick J L, et al.Polyelemental nanoparticle libraries[J]. Science, 2016, 352 (6293), 1565-1569. |
相关文章 5
[1] | 项厚政 权峰 李文超 刘晓磊 冒爱琴 俞海云 . 高熵氧化物的制备及应用研究进展[J]. 过程工程学报, 2020, 20(3): 245-253. |
[2] | 斯庭智 刘清华 徐文祥 丁晓丽. MgxTiAlFeNiCr (x=0.6~2.0)高熵合金微结构演变及耐蚀性[J]. 过程工程学报, 2019, 19(2): 393-399. |
[3] | 韩伟伟 汪鹏 卫言 楚化强 孙勇 曹文健. 火焰法制备碳纳米管研究进展[J]. 过程工程学报, 2019, 19(1): 3-13. |
[4] | 刘志宏杨校锋刘智勇李玉虎李启厚. 制备方法对臭葱石浸出稳定性的影响[J]. 过程工程学报, 2015, 15(3): 412-417. |
[5] | 张星胡鹏曹月斌张海宝李晋林徐瑞芬袁方利. 白光LED用高效荧光粉的制备研究进展[J]. , 2010, 10(6): 1042-1048. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3284