1. 过程工程研究所
2. 鞍钢集团工程技术有限公司
3. 中国科学院过程工程研究所湿法冶金清洁生产技术国家工程实验室
收稿日期:
2018-09-17修回日期:
2018-11-30出版日期:
2019-06-22发布日期:
2019-06-20通讯作者:
石绍渊基金资助:
河南省科技开放合作课题;国家自然科学基金;“十二五”水体污染控制与治理科技重大专项Research progress on modification and antifouling properties of anion exchange membrane
Renqiang CAO1,3, Zhanli FENG2, Yujiao LI1,3, Zhijuan ZHAO1,3, Shaoyuan SHI1,4*1. Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 2. Engineering Technology Co., Ltd., Ansteel Group Corporation, Anshan, Liaoning 114021, China3. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China4. Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, Henan 450000, China
Received:
2018-09-17Revised:
2018-11-30Online:
2019-06-22Published:
2019-06-20摘要/Abstract
摘要: 电渗析技术应用于工业废水脱盐时,废水中有机物及其它杂质组分等会造成膜污染,进而影响脱盐性能。电渗析膜污染防治对促进电渗析在工业废水处理中的应用有重要意义。相比于阳离子交换膜,阴离子交换膜更易形成有机污染,且更严重。阴离子交换膜污染主要由腐殖酸、牛血清蛋白、阴离子表面活性剂等有机物造成,污染过程主要受静电作用、亲和作用和几何因素的影响。膜改性提高阴离子交换膜的抗污染性能是电渗析膜污染防治的有效方法,目前已有许多有关膜改性提高阴离子交换膜抗污染性能的报道。膜改性方法主要有化学改性法、等离子体改性法、表面涂覆改性法、电沉积改性法、自聚合改性法及改进基膜结构法等。本工作对阴离子交换膜改性及抗污染性能的研究进展进行了综述,对不同改性方法的优缺点进行了分析和评价。这些改性方法能提高阴膜表面的负电荷密度和亲水性、降低膜表面粗糙度和基膜含水率等,因此可以改善阴离子交换膜的抗污染性能。然而,目前研究获得的改性阴离子交换膜仍存在修饰层不稳定、抗污染性能不理想和性能测试不系统等缺点,需进一步优化改性方法、改性工艺、组分修饰及性能测试等,以获得抗污染性能稳定且效果良好的改性阴离子交换膜。
引用本文
曹仁强 冯占立 李玉娇 赵志娟 石绍渊. 阴离子交换膜改性及抗污染性能研究进展[J]. 过程工程学报, 2019, 19(3): 473-482.
Renqiang CAO Zhanli FENG Yujiao LI Zhijuan ZHAO Shaoyuan SHI. Research progress on modification and antifouling properties of anion exchange membrane[J]. Chin. J. Process Eng., 2019, 19(3): 473-482.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218283
http://www.jproeng.com/CN/Y2019/V19/I3/473
参考文献
[1] Strathmann H. Electrodialysis, a mature technology with a multitude of new applications[J]. Desalination. 2010, 3(264): 268-288. [2] Khan M I, Zheng C, Mondal A N, et al. Preparation of anion exchange membranes from BPPO and dimethylethanolamine for electrodialysis[J]. Desalination. 2017, 402: 10-18. [3] 张学敏,王三反,周键. 改性离子交换膜抗污染性能研究进展[J]. 工业水处理. 2016,08: 16-19. Zhang X M, Wang S F, Zhou J. Research progress in the antipollution property of modified ion-exchange membranes[J]. Industrial water treatment. 2016,08: 16-19. [4] 刘璐,赵志娟,李雅,等. 工业废水电渗析过程中膜污染研究进展[J]. 过程工程学报. 2015,05: 881-891. Liu L, Zhao Z J, Li Y, et al. Research Progress in Fouling of Ion Exchange Membrane for Electrodialysis Desalination of Industrial Wastewater[J]. The Chinese Journal of Process Engineering. 2015,05: 881-891. [5] Tanaka N, Nagase M, Higa M. Preparation of aliphatic-hydrocarbon-based anion-exchange membranes and their anti-organic-fouling properties[J]. Journal of Membrane Science. 2011, 384(1-2): 27-36. [6] Xu T. Ion exchange membranes: State of their development and perspective[J]. Journal of Membrane Science. 2005, 263(1-2): 1-29. [7] 潘杰峰,谭瑞卿,丁金成,等. 电渗析用阴离子交换膜抗有机污染的调控[J]. 膜科学与技术. 2017,06: 114-120. Pan J F, Tan R Q, Ding J C, et al. Progress on design and preparation of anti-organic fouling anion exchange membranes for electrodialysis[J]. Membrane Science and Technology. 2017,06: 114-120. [8] Park J, Choi J, Yeon K, et al. An approach to fouling characterization of an ion-exchange membrane using current–voltage relation and electrical impedance spectroscopy[J]. Journal of Colloid and Interface Science. 2006, 294(1): 129-138. [9] Hong-Joolee, Jae-Hwanchoi, Jaeweoncho, et al. Characterization of anion exchange membranes fouled with humate during electrodialysis[J]. Journal of Membrane Science. 2002,203: 115-126. [10] Park J S, Chilcott T C, Coster H G L, et al. Characterization of BSA-fouling of ion-exchange membrane systems using a subtraction technique for lumped data[J]. Journal of Membrane Science. 2005, 246(2): 137-144. [11] Lee H, Hong M. Fouling of an anion exchange membrane in the electrodialysis desalination process in the presence of organic foulants[J]. Desalination. 2009,238: 60-69. [12] Bukhovets A, Eliseeva T, Oren Y. Fouling of anion-exchange membranes in electrodialysis of aromatic amino acid solution[J]. Journal of Membrane Science. 2010, 364(1-2): 339-343. [13] Lindstrand V, Sundstr M G R, J Nsson A, et al. Fouling of electrodialysis membranes by organic substances[J]. Desalination. 2000, 128(1): 91-102. [14] Tanaka N, Nagase M, Higa M. Organic fouling behavior of commercially available hydrocarbon-based anion-exchange membranes by various organic-fouling substances[J]. Desalination. 2012, 296: 81-86. [15] Zhao Z, Shi S, Cao H, et al. Property characterization and mechanism analysis on organic fouling of structurally different anion exchange membranes in electrodialysis[J]. Desalination. 2018, 428: 199-206. [16] 郭海成,于水利. 电渗析中离子交换膜有机污染的研究进展[C]. 中国山东威海: 20155. Guo H C,Yu S L. Research progress of organic fouling of ion exchange membranes during electrodialysis[C]. Weihai, Shandong, China: 20155. [17] 徐铜文. 膜化学与技术教程[M]. 合肥:中国科学技术大学出版社,2003. [18] 杨皓程. 基于聚多巴胺/聚乙烯亚胺共沉积技术的聚合物膜表界面工程[D]. 杭州:浙江大学, 2017:7-8. Yang H C. Surface and interface engineering of poiymer Membranes via polydopamine/ polyethylene- imine co-deposition [D]. Hangzhou:Zhejiang University, 2017:7-8. [19] 周蓉. 基于聚多巴胺沉积的聚丙烯微孔膜抗污染表面研究[D]. 杭州:浙江大学, 2014: 8-9. Zhou R. Antifouling surfface for microporous polypropylene membrane based on polydomine deposition[D]. Hangzhou:Zhejiang University, 2014:8-9. [20] Fernandez-Gonzalez C, Zhang B, Dominguez-Ramos A, et al. Enhancing fouling resistance of polyethylene anion exchange membranes using carbon nanotubes and iron oxide nanoparticles[J]. Desalination. 2017, 411: 19-27. [21] Vaselbehagh M, Karkhanechi H, Mulyati S, et al. Improved antifouling of anion-exchange membrane by polydopamine coating in electrodialysis process[J]. Desalination. 2014, 332(1): 126-133. [22] Mulyati S, Takagi R, Fujii A, et al. Improvement of the antifouling potential of an anion exchange membrane by surface modification with a polyelectrolyte for an electrodialysis process[J]. Journal of Membrane Science. 2012, 417-418: 137-143. [23] 葛道才. 耐有机污染阴离子交换膜的制备方法[J]. 海水淡化. 1978,02: 67-71. [24] Wang M, Wang X, Jia Y, et al. An attempt for improving electrodialytic transport properties of a heterogeneous anion exchange membrane[J]. Desalination. 2014, 351: 163-170. [25]赵化侨. 等离子体化学与工艺[M]. 合肥:中国科学技术大学出版社,1993: 300-301. Zhao H Q. Plasma chemistry and processing[M]. Hefei: University?of?Science?and?Technology?of?China?Press, 1993: 300-301. [26]张松峰, 吴力立. 聚偏氟乙烯膜亲水改性研究进展[J]. 化工进展, 2016, 35(8): 2480-2487. Zhang S F, Wu L L. Research progress of hydrophilic modification of polyvinylidene fluoride membranes[J]. Chemical Industry and Engineering Progress. 2016, 35(8): 2480-2487. [27] Zhao Z, Shi S, Cao H, et al. Effect of plasma treatment on the surface properties and antifouling performance of homogeneous anion exchange membrane[J]. Desalination & Water Treatment. 2017, 89: 77-86. [28] 刘小冲,易佳婷,王琛. Ar等离子体改性PTFE膜接枝丙烯酸研究[J]. 化工技术与开发. 2006, 04: 13-18. Liu X C, Yi J T, Wang C. Ar Plasma-induced graft polymerization of acrylic acid onto PTFE films [J]. Technology Development of Chemical Industry. 2006,04: 13-18. [29] Kim E, Yu Q, Deng B. Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling[J]. Applied Surface Science. 2011, 257(23): 9863-9871. [30] Kaur S, Ma Z, Gopal R, et al. Plasma-Induced Graft Copolymerization of Poly(methacrylic acid) on Electrospun Poly(vinylidene fluoride) Nanofiber Membrane[J]. Langmuir. 2007, 23(26): 13085-13092. [31] Güler E, van Baak W, Saakes M, et al. Monovalent-ion-selective membranes for reverse electrodialysis[J]. Journal of Membrane Science. 2014, 455: 254-270. [32] Liu H, Jiang Y, Ding J, et al. Surface layer modification of AEMs by infiltration and photo-cross-linking to induce monovalent selectivity[J]. Aiche Journal. 2018, 64(3): 993. [33] Wang T, Lu J, Mao L, et al. Electric field assisted layer-by-layer assembly of graphene oxide containing nanofiltration membrane[J]. Journal of Membrane Science. 2016, 515: 125-133. [34] Zhao Z, Cao H, Shi S, et al. Characterization of anion exchange membrane modified by electrodeposition of polyelectrolyte containing different functional groups[J]. Desalination. 2016, 386: 58-66. [35] Mulyati S, Takagi R, Fujii A, et al. Simultaneous improvement of the monovalent anion selectivity and antifouling properties of an anion exchange membrane in an electrodialysis process, using polyelectrolyte multilayer deposition[J]. Journal of Membrane Science. 2013, 431: 113-120. [36] Zhao Z, Shi S, Cao H, et al. Layer-by-layer assembly of anion exchange membrane by electrodeposition of polyelectrolytes for improved antifouling performance[J]. Journal of Membrane Science. 2018, 558: 1-8. [37] Zhao Y, Zhu J, Ding J, et al. Electric-pulse layer-by-layer assembled of anion exchange membrane with enhanced monovalent selectivity[J]. Journal of Membrane Science. 2018, 548: 81-90. [38] 马六甲,陈英波,孟建强,等. 氧化石墨烯改性分离膜的研究及应用[J]. 纺织导报. 2016, S1: 56-62. Ma L J, Chen Y B, Meng J Q, et al. Graphene Oxide-modified Separation Membranes: Research and Application[J]. China Textile Leader. 2016, S1: 56-62. [39] 袁方竹,赵文. 氧化石墨烯在净水分离膜改性中的研究进展[J]. 化工管理. 2017, 13: 74. [40] Li Y, Shi S, Cao H, et al. Modification and properties characterization of heterogeneous anion-exchange membranes by electrodeposition of graphene oxide (GO)[J]. Applied Surface Science. 2018, 442: 700-710. [41] Zhao Y, Xu Z, Shan M, et al. Effect of graphite oxide and multi-walled carbon nanotubes on the microstructure and performance of PVDF membranes[J]. Separation and Purification Technology. 2013, 103: 78-83. [42] Wang T, Lu J, Mao L, et al. Electric field assisted layer-by-layer assembly of graphene oxide containing nanofiltration membrane[J]. Journal of Membrane Science. 2016, 515: 125-133. [43] Hegab H M, Wimalasiri Y, Ginic-Markovic M, et al. Improving the fouling resistance of brackish water membranes via surface modification with graphene oxide functionalized chitosan[J]. Desalination. 2015, 365: 99-107. [44] 徐又一,蒋金泓,朱利平,等. 多巴胺的自聚-附着行为与膜表面功能化[J]. 膜科学与技术. 2011, 03: 32-38. Xu Y Y, Jiang J H, Zhu L P, et al. Self-polymerization-adhesion behavior of dopamine and surface functionalization of membranes[J]. Membrane Science and Technology. 2011, 03: 32-38. [45] 赵晨旭,谢银红,廖芝建,等. 聚多巴胺对材料表面功能化的研究及应用进展[J]. 高分子通报. 2015, 12: 28-37. Zhao C X, Xie Y H, Liao Z J, et al. The Research and Application Progress of Polydopamine on the Material Surface Functionalization[J]. Chinese Polymer Bulletin. 2015, 12: 28-37. [46] Vaselbehagh M, Karkhanechi H, Takagi R, et al. Effect of polydopamine coating and direct electric current application on anti-biofouling properties of anion exchange membranes in electrodialysis[J]. Journal of Membrane Science. 2016, 515: 98-108. [47] Vaselbehagh M, Karkhanechi H, Takagi R, et al. Surface modification of an anion exchange membrane to improve the selectivity for monovalent anions in electrodialysis – experimental verification of theoretical predictions[J]. Journal of Membrane Science. 2015, 490: 301-310. [48] Ruan H, Zheng Z, Pan J, et al. Mussel-inspired sulfonated polydopamine coating on anion exchange membrane for improving permselectivity and anti-fouling property[J]. Journal of Membrane Science. 2018, 550: 427-435. [49] Zhao Z, Shi S, Cao H, et al. Property characterization and mechanism analysis on organic fouling of structurally different anion exchange membranes in electrodialysis[J]. Desalination. 2018, 428: 199-206. [50] Higa M, Tanaka N, Nagase M, et al. Electrodialytic properties of aromatic and aliphatic type hydrocarbon-based anion-exchange membranes with various anion-exchange groups[J]. Polymer. 2014, 55(16): 3951-3960. [51]许云杰, 吴俊杰. 膜的改性及其在环境领域应用研究进展[J]. 四川环境, 2009, 28(4): 108-112. Xu Y J,Wu J J. Review of Membrane Modification and Applications in Environmental Field[J]. Sichuan Environment. 2009, 28(4): 108-112. |
相关文章 5
[1] | 孙帅 孙宏骞 宋静 曲景奎 王勇 齐涛. 动态扩散渗析法回收盐酸的实验与模型分析[J]. 过程工程学报, 2021, 21(1): 57-63. |
[2] | 魏允 王倩 丛威. 扩散渗析-电渗析回收赖氨酸离子交换废液中的盐[J]. 过程工程学报, 2019, 19(5): 975-981. |
[3] | 常嵩 怀永建 支岩辉. 改善锂硫电池易燃特性的功能性隔膜研究进展[J]. 过程工程学报, 2018, 18(S1): 14-23. |
[4] | 任洪艳王倩吴霞杨鹏波丛威. 钙盐和氨基酸对味精等电母液模拟料双极膜电渗析过程膜污染的影响[J]. , 2011, 11(4): 627-632. |
[5] | 王倩丛威. 双极膜电渗析再生酸碱过程中的阴膜漏氢研究[J]. , 2011, 11(3): 436-441. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3287