1. 天津科技大学造纸学院,天津 3004572. 中国科学院过程工程研究所离子液体清洁过程北京市重点实验室,北京 1001903. 江苏科技大学环境与化学工程学院,江苏 镇江 212003
收稿日期:
2018-10-11修回日期:
2018-11-11出版日期:
2019-06-22发布日期:
2019-06-20通讯作者:
王慧基金资助:
国家重点研发计划项目;国家自然科学基金委青年科学项目Extraction of glycine using functional ionic liquids
Haiyang XU1, Xiangzhan MENG2, Dasha XIA3, Lanfeng HUI1*, Hui WANG2*1. College of Papermaking Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China 2. Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China3. School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
Received:
2018-10-11Revised:
2018-11-11Online:
2019-06-22Published:
2019-06-20Contact:
Wang HuiHui 摘要/Abstract
摘要: 以结构和功能可设计的离子液体为萃取剂,通过液–液萃取分离甘氨酸,考察了不同结构的咪唑和季铵离子液体萃取分离甘氨酸的效果,研究了pH值、萃取温度、萃取时间、甘氨酸初始浓度和二环己基-18-冠醚-6(DCH18C6)浓度等工艺参数对甘氨酸分配系数和萃取率的影响,考察了胆碱双三氟甲磺酰亚胺盐([N1112(OH)][NTf2])的循环利用性,通过FT-IR和量子化学计算探究了[N1112(OH)][NTf2]和DCH18C6萃取甘氨酸的机理。结果表明,[N1112(OH)][NTf2]的萃取率高于其它离子液体,加入DCH18C6可提高萃取率,[N1112(OH)][NTf2]–DCH18C6复配体系中,甘氨酸萃取率可达85.4%。在最优条件下,分配系数和萃取率分别为10.9和94.4%。离子液体循环利用5次,甘氨酸萃取率仍保持90%。[N1112(OH)][NTf2], DCH18C6和甘氨酸之间存在的强氢键作用为萃取分离的关键。因此,[N1112(OH)][NTF2]?DCH18C6可有效萃取分离甘氨酸,为甘氨酸的绿色分离新工艺奠定基础。
引用本文
许海洋 孟祥展 夏大厦 惠岚峰 王慧. 功能化离子液体萃取分离甘氨酸[J]. 过程工程学报, 2019, 19(3): 544-552.
Haiyang XU Xiangzhan MENG Dasha XIA Lanfeng HUI Hui WANG. Extraction of glycine using functional ionic liquids[J]. Chin. J. Process Eng., 2019, 19(3): 544-552.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218298
http://www.jproeng.com/CN/Y2019/V19/I3/544
参考文献
[1] Catherine Couriol, Catherine Porte, Delacroix A. Setup of glycine continuous synthesis by ammonolysis of monochloroacetic acid [J]. John Wiley & Sons, Inc 1999, 11 (pp), 29-35. [2] Lihua Jiang, Yongjun Qiu, Yaosong Wang, et al. Kinetic and equilibrium study of the chromatographic separation of glycine and ammonium [J]. Bioresources and Bioprocessing 2014, 1 (1), 2-10. [3] Yang L M, Jiang N N, Zhao Z Y. Synthesis of Glycine Using Two-Step Reaction Approach in Alcohol and its Purification [J]. Advanced Materials Research 2011, 396-398 (2012), 1711-1715. [4] Vinod K, Shahi S K T, R Rangarajan. Chronopotentiometric studies on dialytic properties of glycine across ion-exchange membranes [J]. Journal of Membrane Science 2002, 203 (2002) 43–51. [5] Zeng Y, Li Z, Asselin E. Modeling Phase Equilibria for the Glycine–NH4Cl–Methanol–Water System and Its Application for the Industrial Monochloroacetic Acid Process [J]. Industrial & Engineering Chemistry Research 2015, 54 (13), 3488-3497. [6] Zeng Y, Li Z, Demopoulos G P. Process for Glycine Production by Antisolvent Crystallization Using Its Phase Equilibria in the Ethylene Glycol–NH4Cl–Water System [J]. Industrial & Engineering Chemistry Research 2016, 55 (8), 2426-2437. [7] Chen J, Wang Y, Huang Y, et al. Magnetic multiwall carbon nanotubes modified with dual hydroxy functional ionic liquid for the solid-phase extraction of protein [J]. Analyst 2015, 140 (10), 3474-3483. [8] Huaxi L, Zhuo L, Jingmei Y, et al. Liquid–liquid extraction process of amino acids by a new amide-based functionalized ionic liquid [J]. Green Chemistry 2012, 14 (6), 1721. [9] Huddleston J G, Visser A E, Reichert W M, et al. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation [J]. Green Chemistry 2001, 3 (4), 156-164. [10] Ferreira A M, Morais E S, Leite A C, et al. Enhanced extraction and biological activity of 7-hydroxymatairesinol obtained from Norway spruce knots using aqueous solutions of ionic liquids [J]. Green Chemistry 2017, 19 (11), 2626-2635. [11] Ferreira A M, Passos H, Okafuji A, et al. Designing the thermal behaviour of aqueous biphasic systems composed of ammonium-based zwitterions [J]. Green Chemistry 2017, 19 (17), 4012-4016. [12] Epishina M A, Kulikov A S, Ignat’ev N V, et al. Nucleophilic aromatic cine-substitution of hydrogen: the ionic liquid-promoted von Richter reaction [J]. Mendeleev Communications 2015, 25 (1), 41-43. [13] Oliveira F S, Araújo J M, Ferreira R, et al. Extraction of l-lactic, l-malic, and succinic acids using phosphonium-based ionic liquids [J]. Separation and Purification Technology 2012, 85 (2012), 137-146. [14] Onghena B, Opsomer T, Binnemans K. Separation of cobalt and nickel using a thermomorphic ionic-liquid-based aqueous biphasic system [J]. Chemical communications 2015, 51 (88), 15932-15935. [15] Shang D, Zhang X, Zeng S, et al. Protic ionic liquid [Bim][NTf2] with strong hydrogen bond donating ability for highly efficient ammonia absorption [J]. Green Chemistry 2017, 19 (4), 937-945. [16] Ferreira A M, Coutinho J A P, Fernandes A M, et al. Complete removal of textile dyes from aqueous media using ionic-liquid-based aqueous two-phase systems [J]. Separation and Purification Technology 2014, 128 (2014), 58-66. [17] Tomé L I N, Catambas V R, Teles A R, et al. Tryptophan extraction using hydrophobic ionic liquids [J]. Separation and Purification Technology 2010, 72 (2), 167-173. [18] Kojiro Shimojo, K N Noriho Kamiya, Masahiro Goto. Crown ether-mediated extraction and functional conversion of cytochrome C in ionic liquids [J]. Biomacromolecules 2006, 7 (1), 2-5. [19] Cláudio A F M, Ferreira A M, Freire C S R, et al. Optimization of the gallic acid extraction using ionic-liquid-based aqueous two-phase systems [J]. Separation and Purification Technology 2012, 97 (2012), 142-149. [20] Swatloski R P, Holbrey J D, Rogers R D. Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate [J]. Green Chemistry 2003, 5 (4), 361-363. [21] Smirnova S V, Torocheshnikova II, Formanovsky A A, et al. Solvent extraction of amino acids into a room temperature ionic liquid with dicyclohexano-18-crown-6 [J]. Anal Bioanal Chem 2004, 378 (5), 1369-1375. [22] Xiaochun Zhang, F H, Xiaomin Liu, et al. Influence of Microstructure and Interaction on Viscosity of Ionic Liquids [J]. Industrial & Engineering Chemistry Research 2015, 54, 3505-3514. [23] Bai Y, Yan R, Huo F, et al. Recovery of methacrylic acid from dilute aqueous solutions by ionic liquids though hydrogen bonding interaction [J]. Separation and Purification Technology 2017, 184, 354-364. [24] Politzer J P. The electrostatic potential_ an overview [J]. Overview 2011, 1, 153-163. [25] S Jenkins M. The chemical character of the intermolecular bonds of seven phases of ice as revealed by ab initio calculation of electron densities [J]. Chemical Physics Letters 2000, 317 (2000), 97-102. [26] Bondi A. van der Waals Volumes and Radii [J]. The Journal of Physical Chemistry 1964, 68 (3), 441-451. [27] Bai Y, Yan R, Tu W, et al. Selective Separation of Methacrylic Acid and Acetic Acid from Aqueous Solution Using Carboxyl-Functionalized Ionic Liquids [J]. ACS Sustainable Chemistry & Engineering 2017, 6 (1), 1215-1224. [28] Kun Dong, S Z, Daxi Wang, et al. Hydrogen Bonds in Imidazolium Ionic Liquids [J]. J. Phys. Chem. A 2006, 110 (31), 9775-9782. |
相关文章 8
[1] | 罗兴国 黄卉 魏昶 李兴彬 邓志敢 李旻廷. Metral54-100萃取分离铜、镍的密度泛函研究[J]. 过程工程学报, 2020, 20(3): 308-317. |
[2] | 吴文亮 李涛 高红帅 尚大伟 涂文辉 王斌琦 张香平. 咪唑类离子液体高效吸收二氯甲烷[J]. 过程工程学报, 2019, 19(1): 173-180. |
[3] | 李丹 陈德胜 张国之 赵宏欣 齐涛 王伟菁 王丽娜 刘亚辉. 用萃取剂P507从盐酸浸出液中萃取分离钒与铁[J]. 过程工程学报, 2017, 17(6): 1182-1187. |
[4] | 孟建陈璐璐李延斌高保娇. 非水介质中表面引发接枝聚合法制备接枝微粒PMAA/SiO2及其对阿魏酸的氢键吸附性能[J]. 过程工程学报, 2015, 15(4): 646-652. |
[5] | 崔明鑫孙家佳李强. D-海因酶和水解酶在中华根瘤菌中的增强表达[J]. , 2013, 13(4): 681-686. |
[6] | 金声超常志东王康华超于品华刘会洲刘会洲. 由锌锰硫酸溶液三相萃取锌锰离子[J]. , 2009, 9(4): 683-688. |
[7] | 周甜;钱刚;周兴贵;袁渭康. 超声波对甘氨酸溶析结晶过程的影响[J]. , 2007, 7(4): 728-732. |
[8] | 周学玺;杜晓宁;朱屯. 叔胺萃取分离钴(II)、铁(II)[J]. , 2001, 1(4): 0-0. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3270