中国石油大学(华东)化学工程学院,山东 青岛 266580
收稿日期:
2017-08-07修回日期:
2017-10-25出版日期:
2018-06-22发布日期:
2018-06-06通讯作者:
陈帅甫基金资助:
烟气轮机内催化剂颗粒沉积与相变过程的动力学模型研究Model of Particle Deposition and Adhesion on Blade Surface of Flue Gas Turbine
Shuaifu CHEN, Jianjun WANG*, Youhai JINCollege of Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
Received:
2017-08-07Revised:
2017-10-25Online:
2018-06-22Published:
2018-06-06摘要/Abstract
摘要: 建立了催化剂颗粒在烟气轮机叶片表面沉积粘附模型,将催化剂颗粒与叶片表面的碰撞处理为理想弹塑性球体与刚性平面的碰撞进行数值计算. 结果表明,模型预测的催化剂颗粒在烟气轮机叶片表面沉积粘附的部位与实际工况一致,所建模型可有效地预测催化剂颗粒沉积粘附的发生部位.
引用本文
陈帅甫 王建军 金有海. 烟气轮机叶片表面颗粒沉积粘附模型[J]. 过程工程学报, 2018, 18(3): 447-453.
Shuaifu CHEN Jianjun WANG Youhai JIN. Model of Particle Deposition and Adhesion on Blade Surface of Flue Gas Turbine[J]. Chin. J. Process Eng., 2018, 18(3): 447-453.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217291
http://www.jproeng.com/CN/Y2018/V18/I3/447
参考文献
[1] 王宗伟. 烟气轮机复杂工况性能分析与非定常数值研究 [D]. 大连: 大连理工大学, 2011. Wang Z W. Performance Analysis of Complicated Working Conditions and Unsteady Numerieal Study of Flue Gas Turbine [D]. Dalian: Dalian University of Technology, 2011. [2] 张建. 催化裂化三旋内部气固两相流动分析 [D]. 东营: 中国石油大学(华东), 2009. Zhang J. Research On the Gas-so1id Two-·phase Characteristics of Swirl Tube in Third Stage Separators for FCC [D]. Dongying: China University of Petroleum (East China), 2009. [3] 鲁嘉华,凌志光,张志英. 带粒燃气涡轮中颗粒随机轨道模型的简化与分析 [J]. 内燃机工程. 2005, 26(03): 77-81. Lu J H, Ling Z G, Zhang Z Y. Simplification and Validity of Stochastic Trajectory Model of Particles in Particle-Laden Gas Turbine [J]. Chinese Internal Combustion Engine Engineering. 2005, 26(03): 77-81. [4] 于洋. 烟气轮机内流分析及轮盘冲蚀与传热的数值研究 [D]. 大连: 大连理工大学, 2011. Yu Y. Analysis of Flow Field Inside a Flue Gas Turbine and Numerical Investigation of Impeller Erosion and Hear Transfer of a Flue Gas Turbine [D]. Dalian: Dalian University of Technology, 2011. [5] 王为清,周国义,唐积才. 船用增压锅炉烟气涡轮级叶栅三维湍流流动的数值模拟 [J]. 燃气轮机技术. 2009(04): 40-43. Wang W Q, Zhou G Y, Tang J C. Numerical simulation on three-dimensional turbulent flow in a exhaust gas turbine stage cascade for supercharged marine boiler [J]. Gas Turbine Technology. 2009, (04): 40-43. [6] 王兵,张会强,王希麟. 颗粒趋壁沉积的直接数值模拟 [J]. 工程热物理学报. 2009(01): 90-92. Wang B, Zhang H Q, Wang X L. Direct Numerical Simulation of Particle Deposition [J]. Journal of Engineering Thermophysics. 2009, (01): 90-92. [7] 谭锐,王新军,关盼龙,等. 汽轮机末级静叶水滴沉积规律与缝隙去湿研究 [J]. 热能动力工程. 2010(05): 487-490. Tan R, Wang X J, Guan P L. Study of the Law Governing the Water Droplet Deposition and Wetness Removal From the Stationary Blades at the Last Stage of a Steam Turbine [J]. Journal of Engineering For Thermal Energy And Power. 2010, (05): 487-490. [8] 谭慧敏,王建军,金有海. 催化裂化烟气轮机级叶栅内气固两相运动特性的数值研究 [J]. 汽轮机技术. 2012, 54(6): 437-441. Tan H M, Wang J J, Jin Y H. Numerical Simulation of Gas-solid Two-phase Flows in Stage Cascade of Flue Gas Turbine Used for Fcc Unit [J]. Turbine Technology. 2012, 54(6): 437-441. [9] Bowling R A. An Analysis of Particle Adhesion on Semiconductor Surfaces [J]. Journal of The Electrochemical Society. 1985, 132(9): 2208. [10] Brach R M, Dunn P F. A mathematical model of the impact and adhesion of microspheres [J]. Aerosol Sci Tech. 1992, 1(16): 51-64. [11] Cooper K, Gupta A, Beaudoin S. Simulation of the adhesion of particles to surfaces [J]. Journal of Colloid and Interface Science. 2001, 234(2): 284-292. [12] Kaftori D, Hetsroni G, Banerjee S. Particle behavior in the turbulent boundary layer. I. Motion, deposition, and entrainment [J]. Physics of Fluids. 1995, 7(5): 1095. [13] Das S K, Sharma M M, Schechter R S. Adhesion and Hydrodynamic Removal of Colloidal Particles from Surfaces [J]. Particulate Science and Technology. 1995, 13(3-4): 227-247. [14] Jensen J W, Squire S W, Bons J P, et al. Simulated Land-Based Turbine Deposits Generated in an Accelerated Deposition Facility [J]. Journal of Turbomachinery. 2004, 127(3): 462-470. [15] Jia H, Xi G, Gao L, et al. Effects of Deposition Models on Deposition and Performance Deterioration in Axial Compressor Cascade [J]. Chinese Journal of Aeronautics. 2005, 18(1): 20-24. [16] Kota K, Langrish T A G. Prediction of wall deposition behaviour in a pilot-scale spray dryer using deposition correlations for pipe flows [J]. Journal of Zhejiang University-SCIENCE A. 2007, 8(2): 301-312. [17] Kurz R, Brun K. Degradation in gas turbine systems[C]//Proceedings of the ASME Turbo Expo, 2000. [18] Lawson S A, Thole K A. Simulations of Multiphase Particle Deposition on Endwall Film-Cooling Holes in Transverse Trenches [J]. Proceedings of the ASME Turbo Expo, 2012: 79-90. [19] Lawson S A, Thole K A, Okita Y, et al. Simulations of Multi-Phase Particle Deposition on a Showerhead With Staggered Film-Cooling Holes [J]. Journal of Turbomachinery. 2011, 134(1): 157-172. [20] Morini M, Pinelli M, Spina P R, et al. CFD Simulation of Fouling on Axial Compressor Stages [J]. Proceedings of Asme Turbo Expo. 2009, 5: 331-342. [21] Melino F, Morini M, Peretto A, et al. Compressor Fouling Modeling: Relationship Between Computational Roughness and Gas Turbine Operation Time [J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME. 2012, 134(0524015). [22] Song T W, Sohn J L, Kim T S, et al. An Improved Analytic Model to Predict Fouling Phenomena in the Axial Compressor of Gas Turbine Engines[C]//Proceedings of the International Gas Turbine Congress.2003:1-7. [23] Rimai D S, Demejo L P, Bowen R C. Mechanics of particle adhesion [J]. Journal of Adhesion Science and Technology. 1994, 8(11): 1333-1355. [24] Johnson K L, Kendall K, Roberts A D. Surface energy and the contact of elastic solids [J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 1971, 324(1558): 301-313. [25] 蔡振岩,钱建清. 碰撞时间的定量计算 [J]. 大学物理. 1983(第12期): 14-17. Cai Z Y, Qian J Q. Quantitative calculation of collision time [J]. College Physics. 1983, (第12期): 14-17. [26] Hertz H. On the contact of rigid elastic solids and on hardness [J]. Miscellaneous Papers. 1896: 163-183. |
相关文章 15
[1] | 高一博 白春华 王建英 吴旭 雷霄. 高压水射流对白云鄂博矿单体解离度的影响[J]. 过程工程学报, 2021, 21(3): 298-304. |
[2] | 魏格林 李成祥 葛蔚 李金兵. 催化剂孔道结构设计及孔内反应-扩散耦合模拟[J]. 过程工程学报, 2021, 21(3): 265-276. |
[3] | 贺睿 乔崇智 王利民 赵双良. 运动颗粒对传质过程影响的格子Boltzmann模拟[J]. 过程工程学报, 2021, 21(2): 125-133. |
[4] | 王雨晴 刘居陶 徐琴琴 银建中. 超临界流体沉积制备[Emim][BF4]支撑型离子液体膜及其气体分离性能[J]. 过程工程学报, 2021, 21(2): 134-143. |
[5] | 刘堉学 高思鸿 范怡平 卢春喜. 旋流分离-颗粒床耦合气固分离装备旋流场静压分布[J]. 过程工程学报, 2020, 20(9): 1008-1015. |
[6] | 屈雪婧 安敏 管小平 杨宁 孙国刚. 气液鼓泡塔的CFD-PBM耦合模拟:离散法与QMOM方法的对比[J]. 过程工程学报, 2020, 20(7): 788-797. |
[7] | 王治国 张恒 蔺靖杰 苏晓辉 窦益华. 表面活性剂虫状胶束流体中颗粒沉降负尾迹模拟[J]. 过程工程学报, 2020, 20(6): 638-645. |
[8] | 袁纯怡 孙玉柱 杨颖 宋兴福 于建国. D301树脂动态吸附溴离子过程探究及模型拟合[J]. 过程工程学报, 2020, 20(6): 655-666. |
[9] | 薛沚怡 钱付平 朱景晶 董伟 韩云龙 鲁进利. 高湿黏性颗粒在聚四氟乙烯微孔膜滤料表面沉积特性的数值模拟[J]. 过程工程学报, 2020, 20(5): 521-530. |
[10] | 李希铭 牛胜利 曲同鑫 韩奎华 路春美 王永征. 基于颗粒动力学理论的搅拌器中固液流动的数值模拟[J]. 过程工程学报, 2020, 20(3): 265-275. |
[11] | 王娟 李军 邹槊 何星晨 万加亿 周宇. 压滤式水电解槽微通道内球凸-球凹结构绕流特性的模拟[J]. 过程工程学报, 2020, 20(3): 294-301. |
[12] | 盛卓 李开华 程晓哲. 海绵钛中Fe, Ni和Cr杂质引入过程分析[J]. 过程工程学报, 2020, 20(3): 338-346. |
[13] | 魏兵惠 王九成 高峰. 二丁酰环磷腺苷钠在水-丙酮混合溶剂中溶解度的测定与关联[J]. 过程工程学报, 2020, 20(2): 213-221. |
[14] | 刘雅婷 崔鹏 贾邵竣. N,N'-二(2-羟丙基)哌嗪-硫酸钠-水三元体系相平衡测定与计算[J]. 过程工程学报, 2020, 20(2): 141-147. |
[15] | 张雪宽 徐骥 孙俊杰 张永杰 张正好. 竖冷设备结构的离散元法模拟优化[J]. 过程工程学报, 2020, 20(2): 158-166. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3048