南昌大学机电工程学院,江西 南昌 330031
收稿日期:
2017-09-01修回日期:
2017-11-03出版日期:
2018-06-22发布日期:
2018-06-06通讯作者:
张莹基金资助:
国家自然科学基金项目;南昌大学研究生专项资金立项项目Effect of Pore Distribution on Flow and Heat Transfer in Porous Media
Tingfang YU, Aliang LIU, Ying ZHANG*, Zhiqiang WANG, Wenlin YE, Jincong SUNSchool of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
Received:
2017-09-01Revised:
2017-11-03Online:
2018-06-22Published:
2018-06-06摘要/Abstract
摘要: 采用Sierpinski地毯分形技术建立多孔介质内流动和传热模型,通过改变固体基质位置研究了孔隙分布结构对多孔介质内流动特性和热效率的影响,3种孔隙分布为每分形一次固体基质分布在中心位置(A)、分布在中上方(B)和分布在右上方(C),当流体稳定流过多孔介质时,不同的孔隙分布表现出不同流动和传热特性. 结果表明,孔隙分布是影响多孔介质传输特性和传热效率的重要因素,无量纲渗透率k*C>k*B>k*A,多孔介质孔隙率大于0.8时更明显;流体流过不同孔隙分布的多孔介质时,相同孔隙率时与流体接触的固体基质面积A>B>C,传热效果A最佳、C最差. 孔隙分布影响了无量纲局部熵产率,在3种孔隙分布下用Be表示的热传导引起的熵产率占主导.
引用本文
余廷芳 柳阿亮 张莹 王志强 叶文林 孙金丛. 孔隙分布对多孔介质内流动和传热的影响[J]. 过程工程学报, 2018, 18(3): 469-476.
Tingfang YU Aliang LIU Ying ZHANG Zhiqiang WANG Wenlin YE Jincong SUN. Effect of Pore Distribution on Flow and Heat Transfer in Porous Media[J]. Chin. J. Process Eng., 2018, 18(3): 469-476.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217320
http://www.jproeng.com/CN/Y2018/V18/I3/469
参考文献
[1] Ingham D B, Bejan A, Mamut E, et al. Emerging Technologies and Techniques in Porous Media[M]. Springer Netherlands, 2004. [2] Xiong Y. Flow of water in porous media with saturation overshoot: A review [J]. Journal of Hydrology, 2014, 510(3):353-362. [3] Attia A M. Effects of petrophysical rock properties on tortuosity factor [J]. Journal of Petro -leum Science & Engineering, 2005, 48(3–4):185-198. [4] 黄永平, 张程宾. 多孔介质渗流行为的数值模拟研究[J]. 建筑热能通风空调, 2016, 35(4): 38- 42. HUANG Yong-ping, ZHANG Cheng-bin. Numerical simulation of seepage behavior of porous media [J]. Building Thermal Ventilation and Air Conditioning, 2016, 35(4): 38- 42. [5] 邓彩华, 童亮, 陈壁峰,等. 多孔介质流动的直接数值模拟[J]. 武汉理工大学学报(交通科学与工程版), 2011, 35(6):1257-1260. DENG Caihua, TONG Liang, CHEN Sufeng, et al. Direct numerical simulation of flow in porous media [J]. Journal of Wuhan University of Technology (Traffic Science and Engineering Edition),2011,35(6): 1257-1260. [6] Mehmani A, Prodanovi? M. The effect of micoporosity on transport properties in porous media[J]. Advances in Water Resources, 2014, 63(2):104-119. [7] Chen Y, Shen C, Lu P, et al. Role of pore structure on liquid flow behaviors in porous media characterized by fractal geometry[J]. Chemical Engineering & Processing Process Intensification, 2015, 87:75-80. [8] Giorgio Pian , Ulrico Sanna. Case studies on the influence of microstructure voids on thermal conductivity in fractal porous media[J]. Case Studies in Thermal Engineering, 2014,2:8-13. [9] Huai X, Wang W, Li Z. Analysis of the effective thermal conductivity of fractal porous media[J]. Applied Thermal Engineering, 2007, 27(17–18):2815-2821. [10] Pathak M G, Mulcahey T I, Ghiaasiaan S M. Conjugate heat transfer during oscillatory laminar flow in porous media[J]. International Journal of Heat & Mass Transfer, 2013, 66(11):23-30. [11] Gamrat G, Favre-Marinet M, Person S L. Numerical study of heat transfer over banks of rods in small Reynolds number cross-flow[J]. International Journal of Heat & Mass Transfer, 2008, 51(3–4):853-864. [12] M.B. Saito, M.J.S. De Lemos, A correlation for interfacial heat transfer coefficient for turbulent flow over an array of square rods, J. Heat Transfer,128 (2006) 444–452. [13] Torabi M, Peterson G P, Torabi M, et al. A thermodynamic analysis of forced convection through porous media using pore scale modeling[J]. International Journal of Heat & Mass Transfer, 2016, 99:303-316. [14] Mahmud S, Fraser R A. The second law analysis in fundamental convective heat transfer problems[J]. International Journal of Thermal Sciences, 2003, 42(2):177-186. [15] Mahmud S, Fraser R A. The second law analysis in fundamental convective heat transfer problems[J]. International Journal of Thermal Sciences, 2003, 42(2):177-186. [16] D.A. Nield, A. Bejan, Convection in Porous Media, Springer, New York, 2006. [17] F. Kuwahara, M. Shirota, A. Nakayama, A numerical study of interfacial convective heat transfer coefficient in two-energy equation model for convection in porous media, Int. J. Heat Mass Transfer 44 (2001) 1153–1159. [18] N. Wakao, S. Kaguei, Heat and Mass Transfer in Packed Beds, Gordon and Breach, New York, 1982. |
相关文章 14
[1] | 魏格林 李成祥 葛蔚 李金兵. 催化剂孔道结构设计及孔内反应-扩散耦合模拟[J]. 过程工程学报, 2021, 21(3): 265-276. |
[2] | 王志奇 邹玉洁 刘柏希 张振康. 热风循环隧道烘箱的流场模拟及结构优化[J]. 过程工程学报, 2020, 20(5): 531-539. |
[3] | 陈岳 马明 张莹 过海龙 万启坤. 多孔介质方腔内置芯片热流耦合的LBM数值模拟[J]. 过程工程学报, 2020, 20(2): 123-132. |
[4] | 司凯凯 陈运法 刘庆祝 熊瑞 孙广超 刘开琪 . 陶瓷膜过滤器内流场及热致损毁机理模拟分析[J]. 过程工程学报, 2020, 20(11): 1329-1335. |
[5] | 陶源清 颜克凤 李小森 陈浩. 盐离子对蒙脱石水化膨胀特性的影响[J]. 过程工程学报, 2020, 20(10): 1182-1189. |
[6] | 蔡卫东 谭志洪 熊桂龙 刘丽冰 魏林生. 覆尘滤袋综合渗透率的分形求解[J]. 过程工程学报, 2019, 19(5): 997-1005. |
[7] | 魏舒婷 钱付平 程家磊 肖鹏程 唐莲花 姜荣贺. 蜂窝状空气滤清器的流场分析及结构优化[J]. 过程工程学报, 2019, 19(2): 271-278. |
[8] | 曲践 李保卫 龚志军 武文斐. O2/CO2气氛下单颗粒焦炭燃烧竞争效应的数值模拟[J]. 过程工程学报, 2017, 17(4): 725-731. |
[9] | 王哲 王景甫 郭莲莲. 烧结矿等效导热系数实验测量及分析[J]. 过程工程学报, 2017, 17(4): 879-882. |
[10] | 宋永臣阮徐可梁海峰李清平赵越超. 天然气水合物热开采技术研究进展[J]. , 2009, 9(5): 1035-1040. |
[11] | 李明春;田彦文;翟玉春. 固定床内石灰石煅烧与传递过程的数值模拟[J]. , 2006, 6(2): 167-172. |
[12] | 李明春;徐曾和;翟玉春;田彦文. 固定床一维对流-扩散-非线性反应方程的数值解析[J]. , 2004, 4(6): 490-495. |
[13] | 林微;陈光进. 气体水合物分解动力学研究现状[J]. , 2004, 4(1): 69-74. |
[14] | 梁玉秀;鲁金明;李邦民;王金渠;殷德宏. 在粗孔a–Al2O3载体上合成NaA沸石膜[J]. , 2003, 3(3): 0-0. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3051