删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

炉膛高度对步进式轧钢加热炉性能的影响

本站小编 Free考研考试/2022-01-01

李 浩1, 戴方钦1*, 丁翠娇2, 郭 悦1
1. 武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室,湖北 武汉 430081;2. 宝武钢铁集团宝钢股份中央研究院武汉分院,湖北 武汉 430080
收稿日期:2017-08-14修回日期:2017-10-26出版日期:2018-06-22发布日期:2018-06-06
通讯作者:戴方钦



Effect of Furnace Height on Performance of Walking-beam Reheating Furnace

Hao LI1, Fangqin DAI1*, Cuijiao DING2, Yue GUO1
1. Key Lab for Ferrous Metallurgy and Resources, Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China;2. Baowu Iron and Steel Group, Wuhan Branch of Baosteel Central Research Institute, Wuhan, Hubei 430080, China
Received:2017-08-14Revised:2017-10-26Online:2018-06-22Published:2018-06-06
Contact:DAI Fang-qin






摘要/Abstract


摘要: 以能量平衡为基础,采用辐射段法模型建立了炉气段、炉围段和钢坯表面段的能量方程组,通过钢坯表面的热流与内部导热方程耦合求解,其中炉气和炉围的温度场采用主变量修正法求解,钢坯温度场采用隐式有限差分求解,与现场实测板坯温度对比验证模型的准确性,分析了上炉膛各段高度对钢坯温度场及排烟温度的影响. 结果表明,预热段高度在0.5~0.9 m,高度每增加0.2 m,钢坯出炉时上表面温度升高约2.8℃,排烟温度降低约10℃;加热一段高度在0.9~1.9 m,高度每增加0.2 m,钢坯出炉时上表面温度平均增加2.5℃,排烟温度平均降低8.5℃;加热二段和均热段高度变化对钢坯出炉时表面温度及排烟温度影响不大. 合理确定预热段和加热一段高度有利于钢坯加热并节省燃料消耗.

引用本文



李浩 戴方钦 丁翠娇 郭悦. 炉膛高度对步进式轧钢加热炉性能的影响[J]. 过程工程学报, 2018, 18(3): 551-556.
Hao LI Fangqin DAI Cuijiao DING Yue GUO. Effect of Furnace Height on Performance of Walking-beam Reheating Furnace[J]. Chin. J. Process Eng., 2018, 18(3): 551-556.



使用本文




0
/ / 推荐

导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217309
http://www.jproeng.com/CN/Y2018/V18/I3/551







[1] Song Z P, Shi J. Discussion on Industrial Furnace Energy Saving and Environmental Protection in China[J]. Industrial Furnace, 2014,36(1):1-8.
[2] Tan C K, Jenkins J, Ward J, et al. Zone Modelling of the Thermal Performances of a Large-scale Bloom Reheating Furnace[J]. Applied Thermal Engineering, 2013, 50(1):1111-1118.
[3] Hu Y, Tan C K, Broughton J, et al. Development of Transient Mathematical Models for a Large-scale Reheating Furnace Using Hybrid Zone-CFD Methods[J]. Energy Procedia, 2015, 75:3076-3082.
[4] Zhou W, Qiu T. Zone Modeling of Radiative Heat Transfer in Industrial Furnaces Using Adjusted Monte-Carlo Integral Method for Direct Exchange Area Calculation[J]. Applied Thermal Engineering, 2015, 81:161-167.
[5] Jenkins J, Ward J, Tan C K, et al. An Improved Mathematical Model to Predict the Real Time Transient Performance of a Large Steel Reheating Furnace[J]. American Society of Mechanical Engineers, 2011:1597-1607.
[6] Ebrahimi H, Zamaniyan A, Mohammadzadeh J S S, et al. Zonal Modeling of Radiative Heat Transfer in Industrial Furnaces Using Simplified Model for Exchange Area Calculation[J]. Applied Mathematical Modelling, 2013, 37(16-17):8004-8015.
[7] Selcuk N, Siddalla R G, Beér J M. A Comparison of Mathematical Models of the Radiative Behaviour of a Large-scale Experimental Furnace[J]. Symposium on Combustion, 1977, 16(1):53-62.
[8] Vode F, Jakli? A, Kolenko T. Online Simulation Model of the Slab-Reheating Process in a Pusher-type Furnace[J]. Applied Thermal Engineering, 2007, 27(5):1105-1114.
[9] Man Y K. A Heat Transfer Model for the Analysis of Transient Heating of the Slab in a Direct-fired Walking Beam Type Reheating Furnace[J]. International Journal of Heat & Mass Transfer, 2007, 50(19):3740-3748.
[10] Han S H, Chang D, Huh C. Efficiency Analysis of Radiative Slab Heating in a Walking-beam-type Reheating Furnace[J]. Energy, 2011, 36(2):1265-1272.
[11] 李国军, 陈海耿. 三维段法数学模型在加热炉上的应用[J]. 中国冶金, 2010, 20(3):7-7.
Li G J, Chen H G. Application of Three-Dimensional Zone Method Mathematic Model on Reheat Furnace[J]. China Metallurgy, 2010, 20(3):7-7.
[12] 赫金龙. 蓄热式加热炉段法模型研究[D]. 沈阳:东北大学, 2010,47-63.
He J L. Study of Zone Model on Regenerative Reheating Furnace[D]. Shenyang: Northeastern University, 2010,47-63.
[13] Ye G. Monte-Carlo and Number Theory Grid Method for Calculating Multiple Integrals[J]. Journal of Dalian University of Technology, 2001, 41(1).
[14] 杨能彪. 一维非稳态导热问题的数值计算[J]. 青海师范大学学报(自科版), 2006, 2006(4):24-26.
Yang N B. Non-steady State Numerical Solution about One-dimensional Heat Transmition[J].Journal of Qinghai Normal University(Natural Science),2006, 2006(4):24-26.
[15] 李庆扬, 王能超, 易大义. 数值分析.第5版[M]. 北京:清华大学出版社, 2008,159-161.
Li Q Y, Wang N C, Yi D Y. Numerical Analysis. Fifth Edition[M]. Beijing Tsinghua University Press, 2008,159-161.
[16] 赵海. 蓄热式连续加热炉数学模型的研究[D]. 沈阳:东北大学, 2001,49-52.
Zhao H. Study of the Mathematical Model for Regenerative Reheating Furnace[D]. Shenyang: Northeastern University, 2001,49-52.
[17] 英克鲁佩勒. 传热和传质基本原理[M]. 北京:化学工业出版社, 2007, 517.
Incropera. Fundamentals of Heat and Mass Transfer[M].Beijing: Chemical Industry Press,2007, 517.
[18] 马科夫斯基, 拉夫连契克. 加热炉控制算法[M]. 北京:冶金工业出版社, 1985,7-8.
Markovsky, Rafflesiank. Control Algorithm of Heating Furnace [M]. Beijing: Metallurgical Industry Press, 1985,7-8.




[1]文明芬;翟玉春;陈廉;等. 快淬Zr0.9Ti0.1(Ni,Co,Mn,V)2.1贮氢合金的结构与性能[J]. , 2001, 1(4): 0-0.





PDF全文下载地址:

http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3064
相关话题/北京 冶金 湖北 东北大学 武汉科技大学